GPS News  
INTERN DAILY
Zika virus could help combat brain cancer
by Staff Writers
Sao Paulo, Brazil (SPX) Feb 22, 2018

"The use of oncolytic viruses [viruses genetically engineered to destroy tumor cells] is at an advanced stage, especially to treat skin cancer and myeloma [bone marrow cancer]," Catharino said. "Zika could be a candidate for the treatment of glioblastoma."

Zika virus, feared for causing microcephaly in babies whose mothers were infected during pregnancy by attacking the cells that will give rise to the fetus's cerebral cortex, could be an alternative for treatment of glioblastoma, the most common and aggressive kind of malignant brain tumor in adults.

This discovery was made by researchers at the University of Campinas's School of Pharmaceutical Sciences (FCF-UNICAMP) in Sao Paulo State, Brazil.

"Zika virus, which has become a threat to health in the Americas, could be genetically modified to destroy glioblastoma cells," said Rodrigo Ramos Catharino, a professor at FCF-UNICAMP and head of the institution's Innovare Biomarker Laboratory.

Through the mass spectrometry analysis of Zika virus-infected glioblastoma cells, scientists also identified the presence of digoxin, a molecule which induced the death of tumoral cells of skin and breast cancer in previous experiments.

Resulting from a Thematic Project supported by the Sao Paulo Research Foundation - FAPESP , the study is described in an article posted to bioRxiv, a preprint repository for the biological sciences, and accepted for publication by Journal of Mass Spectrometry.

Previous research conducted recently in Brazil and elsewhere points to increased mortality rates for human neural progenitor cells (hNPCs) infected by Zika virus, as well as growth inhibition and morphological abnormalities.

Alterations in these cells, which are precursors of brain cells and become cortical neurons in embryos and fetuses, may be a cause of microcephaly in babies whose mothers have been infected by Zika. Other studies have shown that the virus is capable of moving into brain cells, modifying the regulation of the cell cycle, and inducing their death.

In light of these findings, the researchers at FCF-UNICAMP set out to investigate the effects of Zika virus when it infects glioblastoma cells. To do this, they infected human malignant glioblastoma cells with Zika and recorded microscope images of them 24 hours and 48 hours after infection in order to observe any metabolic alterations (cytopathic effects) caused by inoculation of the virus.

The results of the analysis showed that the glioblastoma cells displayed moderate cytopathic effects 24 hours after infection, such as rounded, swollen cell bodies and formation of syncytia, masses of cytoplasm in which the membrane contains several nuclei.

The most severe cytopathic effects were observed 48 hours after infection, with a larger number of rounded, swollen cells, more syncytium formation and pronounced loss of cell integrity, all of which denote cell death.

"The cytopathic effects of Zika infection on glioblastoma cells were observed most clearly after 48 hours. Cell morphology was almost totally altered during this period," Catharino said.

Key molecule
To identify the main compounds (metabolites) produced by glioblastoma cells during infection by Zika, the researchers analyzed the cells using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI).

The technique consists of breaking down the atoms or molecules in a sample so that they become charged with more or fewer electrons than the original (ionization) and then separating them by mass/charge ratio in order to identify and quantify them.

The mass spectrometry data were submitted to statistical analysis, which showed that 24 hours after infection, the cells began to produce cardiac glycosides, especially digoxin.

Previous in vitro studies conducted by researchers in other countries showed that this molecule was able to reduce the multiplication and increase the mortality of cells from melanoma, the most aggressive type of skin cancer, as well as breast cancer and neuroblastoma, a tumor that typically affects patients aged 15 or younger.

Because digoxin and other cardiac glycosides have been shown to induce cancer cell death, the researchers concluded that infection by Zika triggered synthesis of the molecule in glioblastoma cells and that this phenomenon is probably one of the factors that lead to neuronal cell death. "Digoxin could be the key molecule that activates glioblastoma cell death during Zika infection," Catharino said.

Based on these findings, the researchers suggest that a genetically engineered Zika virus could eliminate the effects of infection and leave only the viral particles that synthesize digoxin. Thus, the virus could be an alternative for the treatment of glioblastoma, which is highly resistant to chemotherapy drugs.

"The use of oncolytic viruses [viruses genetically engineered to destroy tumor cells] is at an advanced stage, especially to treat skin cancer and myeloma [bone marrow cancer]," Catharino said. "Zika could be a candidate for the treatment of glioblastoma."

Research paper


Related Links
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Hospital and Medical News at InternDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


INTERN DAILY
Scientists successfully test new, safer titanium plate for bone tissue repair
Matsumoto, Japan (SPX) Feb 14, 2018
For the first time, patented titanium fiber plates developed by Japanese engineers for medical use were put to the test in an animal model. Researchers from Shinshu University found that, unlike conventional plates, the titanium fiber plates do not cause bone embrittlement after close contact with the bone for prolonged periods. This could eliminate the need for plate extraction and the associate surgical risks. "Our titanium fiber plates, unlike conventional titanium plates are prepared by ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERN DAILY
Pesticide traces in three-quarters of French fruit: report

Growing crops with crushed rocks could reduce CO2 emissions

Myanmar farmers going against the grain with apps

Giant London glasshouse to reopen with world's rarest plants

INTERN DAILY
Silicon qubits plus light add up to new quantum computing capability

First 3-D imaging of excited quantum dots

Mass production of new class of semiconductors closer to reality

Fingerprints of quantum entanglement

INTERN DAILY
Extreme conditions await MH370 recovery if wreckage found

US fighter jet drops fuel tanks in Japan accident

Air Force makes way for the B-21 Raider to replace B-1B, B-2 bombers

Chinese woman follows handbag into X-ray scanner

INTERN DAILY
Optimizing recycling of scrap car parts yields big savings

VW, Daimler face more recalls over emissions cheating: report

German court could open way to bans on diesel cars

Maximizing the environmental benefits of autonomous vehicles

INTERN DAILY
US eyes heavy tariffs on China, Russia to counter steel, aluminum glut

After stunning growth streak, Amazon ambitions seem boundless

HSBC profits surge as CEO departs

WTO chief urges US to avoid paralysing trade system

INTERN DAILY
Poland illegally logged in ancient forest: EU court advisor

Polish logging in ancient forest breaches EU law: court advisor

Hunting wolves in Serbia's southern forests

A theory of physics explains the fragmentation of tropical forests

INTERN DAILY
Tracking a typhoon's seismic footprint

Ball Aerospace Delivers Flight Cryocooler Early for NASA's Landsat Mission

Farewell to a Pioneering Pollution Sensor

ESA Cluster mission unveils the magnetosphere

INTERN DAILY
Scalable and cost-effective manufacturing of thin film devices

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support

Fast-spinning spheres show nanoscale systems' secrets

Scientists observe nanowires as they grow









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.