GPS News  
CHIP TECH
X-ray optics on a chip
by Staff Writers
Chester UK (SPX) Aug 19, 2016


Dashed lines mark the channel boundaries and the enlarged part displays the region where the wave is coupled in. The intensity is normalized and plotted in logarithmic scaling. Image courtesy Hoffmann-Urlaub and Salditt.

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of a millimetre-sized chip capable of splitting a beam of X-rays.

Fork-shaped channels that are only a few tens of nanometres wide and deep are transferred into a silicon wafer using electron-beam lithography and reactive ion etching then enclosed by bonding a second silicon wafer on top.

The results of simulations of how the 'parent' beam is split into two 'daughter' beams on passing through the chip were backed up by experimental measurements at the European Synchrotron Radiation Facility, showing that the incident beam is efficiently transported through the chip, neatly split and guided to exits that have precisely controlled (and tunable) spacings.

After the daughter beams leave the chip, they interfere, leading to a pattern of vertical stripes just like the pattern obtained from a classical Young's double-slit interference experiment.

Interestingly, on close inspection there are fork-like structures within the stripes that originate from discontinuities in the phase of the recombined beam, forming striking features known as phase vortices.

Furthermore, from those interference patterns the intensity distribution in the exit plane of the channels is reconstructed, which is found to be in very good agreement to the actual channel design.

This study complements earlier work on two-dimensionally confined channels in silicon in straight and tapered geometries, and paves the way to realizing `X-ray optics on a chip'. Illumination of samples by the two beams could provide some interesting advantages for coherent imaging and opens up the possibility of a new form of nano-interferometer.

The authors envisage future development of their beamsplitter to create several daughter beams from the same parent beam, which would allow a single object to be imaged simultaneously by several beams, each from a different direction.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
International Union of Crystallography
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
See-through circuitry
Thuwal, Saudi Arabia (SPX) Aug 15, 2016
High-performance electronic circuits made entirely from transparent materials could have countless applications, from head-up displays on car windscreens to transparent TV sets and smart windows in homes and offices. Researchers at KAUST have found a way to make transparent transistors and other essential components of electronic circuitry using inexpensive and readily available materials and a ... read more


CHIP TECH
The fuel for Hong Kong's engine: milk tea

New method for quantifying methane emissions from manure management

Researchers discover a special power in wheat

Flowering meadows benefit humankind

CHIP TECH
New microchip demonstrates efficiency and scalable design

New theory could lead to new generation of energy friendly optoelectronics

X-ray optics on a chip

See-through circuitry

CHIP TECH
Australia to study drift of MH370 debris

Power of Pink Provides NASA with Pressure Pictures

NASA-funded balloon mission begins fourth campaign

Lockheed inaugurates T-50A ground-training facility

CHIP TECH
New Zealand steering committee to push EVs

Bio-inspired tire design: Where the rubber meets the road

Giving eCar drivers more miles per minute of charging

How cars could meet future emissions standards: Focus on cold starts

CHIP TECH
US watchdog clears ChemChina's Syngenta acquisition

Iran interested in proposed Chinese-built canal in Nicaragua

Samsung buys US luxury home appliance maker Dacor

Taiwan's Hon Hai gets Chinese green light for Sharp deal

CHIP TECH
Europe's oldest known living inhabitant

Colombia to plant eight million trees for conflict victims

Logging can decrease water infiltration into forest soils, study finds

A plant present in Brazil is capable of colonizing deforested areas

CHIP TECH
Stanford scientists combine satellite data and machine learning to map poverty

Van Allen probes catch rare glimpse of supercharged radiation belt

New map of world vegetation reveals substantial changes since 1980s

CYGNSS Undergoes Vibration Testing

CHIP TECH
Lehigh engineer discovers a high-speed nano-avalanche

Quantum dots with impermeable shell: A powerful tool for nanoengineering

Researchers resolve problem that has been holding back a tech revolution

Tailored probes for atomic force microscopes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.