Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
X-ray laser probes biomolecules to individual atoms
by Staff Writers
Menlo Park CA (SPX) Jun 07, 2012


This rendering shows a lysozyme structural model against its X-ray diffraction pattern from SLAC National Accelerator Laboratory's Linac Coherent Light Source (LCLS), a powerful X-ray laser facility. Researchers have achieved high-resolution images of these simple biomolecules using advanced crystallography at LCLS. This successful demonstration paves the way for studies of more complex biological structures. Credit: Anton Barty/DESY.

An international team led by the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory has proved how the world's most powerful X-ray laser can assist in cracking the structures of biomolecules, and in the processes helped to pioneer critical new investigative avenues in biology. The team's experiments, reported this week in Science, used SLAC's Linac Coherent Light Source (LCLS) to obtain ultra-high-resolution views of crystallized biomolecules, including a small protein found in egg whites called lysozyme.

For decades, scientists have reconstructed the shape of biological molecules and proteins by illuminating crystallized samples with X-rays to study how they scatter the light.

The team's work with lysozyme represents the first-ever high-resolution experiments using serial femtosecond crystallography - the split-second imaging of tiny crystals using ultrashort, ultrabright X-ray laser pulses (a femtosecond is one quadrillionth of a second).

The technique utilized a higher resolution than previously achieved using X-ray lasers, allowing scientists to use smaller crystals than typical with other methods, and could also enable researchers to view molecular dynamics in a way never before possible.

"We were able to actually visualize the structure of the molecule at a resolution so high we start to infer the position of individual atoms," said Sebastien Boutet, a staff scientist at LCLS who led the research.

"Not only that, but the structure we observed matches the known structure of lysozyme and shows no significant sign of radiation damage, despite the fact that the pulses completely destroy the sample.

This is the first high-resolution demonstration of the 'diffraction-before-destruction' technique on biological samples, where we're able to measure a sample before the powerful pulses of the LCLS damage it," he added.

The team chose lysozyme as the first sample for their research because it is easy to crystallize and has been extensively studied.

Their work not only determined lysozyme's structure at such high resolution that it showed individual amino acids, but also proved the ability to use extremely small crystals for a range of applications. Boutet says the team has also studied more complex proteins and systems that they are analyzing now.

Ultimately, scientists using LCLS are driving toward an atomic- and molecular-scale understanding of complex biological systems - such as the membrane proteins that are critical in cell functions and the mechanisms that power photosynthesis - which could lead to discoveries in a range of sciences, from pharmaceutical breakthroughs to new sources of alternative energy.

The experiment was the first study performed on the new Coherent X-ray Imaging (CXI) instrument, a "molecular camera" designed, built and commissioned by SLAC and now available to the scientific community.

Also key to the study was a novel custom-made detector, the Cornell-SLAC Pixel Array Detector (CSPAD), developed in collaboration between Cornell University and SLAC for use at the CXI instrument.

"This important demonstration shows that the technique works, and it paves the way for a lot of exciting experiments to come," says Boutet.

.


Related Links
DOE/SLAC National Accelerator Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Quantum computers will be able to simulate particle collisions
Washington DC (SPX) Jun 07, 2012
Quantum computers are still years away, but a trio of theorists has already figured out at least one talent they may have. According to the theorists, including one from the National Institute of Standards and Technology (NIST), physicists might one day use quantum computers to study the inner workings of the universe in ways that are far beyond the reach of even the most powerful conventional s ... read more


TIME AND SPACE
Scientists complete most comprehensive genetic analysis yet of corn

EU farming reform caught in budget stalemate

France to ban Swiss pesticide as bee threat

Brazil farmers in legal feud with Monsanto over GM soy

TIME AND SPACE
The first chemical circuit developed

Copper-nickel nanowires could be perfect fit for printable electronics

Japan's Renesas ups chip outsourcing to Taiwan giant

New silicon memory chip developed

TIME AND SPACE
US calls on EU to abandon 'lousy' carbon tax on airlines

Boeing Delivers Final Wedgetail AEW and C Aircraft to Australia

EADS sees S. America entry with Chile deal

Louis Gallois hands EADS reins to Tom Enders

TIME AND SPACE
Chinese and Japanese investors bid for Saab

Volkswagen targets China in group shakeup

Japan's vehicle output soars 174% in April

Japan's April auto output soars in year after quake

TIME AND SPACE
Sri Lanka's Chinese-built port opens for business

Panama -- what? Nicaragua has $30-bn plan for its own canal

Gabon renegotiating Chinese iron mining deal

Australian shareholders OK Gloucester-Yancoal deal

TIME AND SPACE
Trees grow in Poland through free send-a-seedling drive

Highway through Amazon worsens effects of climate change, provides mixed economic gains

Standing trees better than burning ones for carbon neutrality

'Missing' Borneo radio host says he is in hiding

TIME AND SPACE
Taking action for GMES

CryoSat goes to sea

S Korea to develop geostationary satellite for environmental monitoring

LiDAR Technology Reveals Faults Near Lake Tahoe

TIME AND SPACE
Coatings with nanoparticles that interact with sunlight and eliminate contaminants are developed

Wyss Institute develops nanodevice manufacturing strategy using DNA 'building blocks'

First direct observation of oriented attachment in nanocrystal growth

Stunning image of smallest possible 5 rings




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement