![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Atlanta GA (SPX) Jun 21, 2017
Summer wildfires boost air pollution considerably more than previously believed. Naturally burning timber and brush launch what are called fine particles into the air at a rate three times as high as levels noted in emissions inventories at the U.S. Environmental Protection Agency, according to a new study. The microscopic specks that form aerosols are a hazard to human health, particularly to the lungs and heart. "Burning biomass produces lots of pollution. These are really bad aerosols to breathe from a health point of view," said researcher Greg Huey from the Georgia Institute of Technology, which led the study. The research also describes other chemicals in wildfire smoke, some never before measured, and it raises the estimated annual emission of particulate matter in the western United States significantly. The previous EPA data had been based on plume samples taken in controlled burns ignited by forestry professionals. Measuring plumes so thoroughly, from the sky, directly in the thick of a wildfire had not been possible before this study.
Plunging into plume "We actually went to measure, right above the fire, what was coming out," said Huey, a professor in Georgia Tech's School of Earth and Atmospheric Sciences, which he also chairs. Bob Yokelson, a professor of atmospheric chemistry at the University of Montana has taken a leadership role in many aspects of the research and was in a group of about 20 scientists who selected the instruments to be installed on the large NASA plane. "We really didn't have to go without anything we wanted really badly," he said. Yokelson also helped design the flight paths. Georgia Tech had instruments and scientists on the NASA DC-8 plane. Researchers associated with a total of more than a dozen universities and organizations participated in data collection or analysis. The scientists published their peer-reviewed results on June 14 in the Journal of Geophysical Research: Atmospheres. "This paper is expected to serve as a basis for the next NASA fire chemical monitoring mission," Huey said.
Refinery in flames "You can see the smoke, and it's dark for a reason," Huey said. "When you go measuring wildfires, you get everything there is to measure. You start to wonder sometimes what all is in there." The study found many organic chemicals in the wildfire plumes, and technological advancements allowed them to detect certain nitrates in the smoke for the first time. But burning biomass does not appear to be a dominant source of these chemical pollutants, and the major findings of the study involved the fine particles. Particulate matter, some of which contains oxidants that cause genetic damage, are in the resulting aerosols. They can drift over long distances into populated areas. People are exposed to harmful aerosols from industrial sources, too, but fires produce more aerosol per amount of fuel burned. "Cars and power plants with pollution controls burn things much more cleanly," Huey said. Various aerosols also rise up in the atmosphere, but their net effect on global warming or cooling is still uncertain, as some aerosols reflect sunlight away from Earth, and others, in contrast, trap warmth in the atmosphere.
Prescribed burnings So-called prescribed burnings prevent or reduce wildfires, and they appear to produce far less pollution per unit area than wildfires, the study said. "A prescribed fire might burn five tons of biomass fuel per acre, whereas a wildfire might burn 30," said Yokelson, who has dedicated decades of research to biomass fires. "This study shows that wildfires also emit three times more aerosol per ton of fuel burned than prescribed fires." While still more needs to be known about professional prescribed burnings' emissions, this new research makes clear that wildfires burn much more and pollute much more. The data will also help improve overall estimates of wildfire emissions. Fire prevention professionals follow stringent rules to carry out prescribed burns to avoid calamity and sending pollution downwind into populated areas. The researchers do not recommend that inexperience people burn biomass, as this contributes to air pollution and can trigger tragic blazes, including wildfires.
Daunting flights "The smoke leaks into the cabin and makes you nauseous," said Yokelson, who started flying plume missions many years ago. "You're trying to take notes, run your instrument, look at the fire, talk on the headset, and get pictures. And at the same time, it's crazy bumpy. Normally, if you're in a smaller plane, your stomach is not too happy." Also, wildfires pop up unannounced, so flight schedules must be hammered out on short notice around strict regulations that normally prohibit flights near wildfires. Research aircraft also have to coordinate with regional authorities to avoid crossing paths with fire-fighting planes. The rare data the flights from NASA's SEAC4RS mission and the Department of Energy's BBOP mission have provided stand to greatly increase understanding of the pollutants naturally burning biomass flings into the air. Flight projects that collected the data and also tropical storm data were: SEAC4RS by NASA and BBOP by the U.S. Department of Energy. SEAC4R stands for Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys. BBOP stands for Burning Biomass Observation Project.
![]() Cape Town (AFP) June 8, 2017 p to ten thousand people were evacuated from their homes as fires continued to ravage South Africa's Western Cape region on Thursday, fanned by a ferocious winter storm. Worst-hit was Knysna, a town of 77,000 people 500 kilometres (310 miles) east of Cape Town on South Africa's famed Garden Route, as firefighters battled to quell 26 fires along the tourist trail. The intense storm has c ... read more Related Links Georgia Institute of Technology Forest and Wild Fires - News, Science and Technology
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |