GPS News  
TECTONICS
Why Tehran is sinking dangerously
by Staff Writers
Potsdam, Germany (SPX) Dec 07, 2018

2015-2017 average subsidence rate in Greater Tehran based on data of the Sentinel satellite system

Iran has a water problem. The reserves in many groundwater basins there have been severely depleted. For the last forty years, the country has invested a lot in the agricultural sector and has been striving to be independent in its food supply. In order to cover the increased water demand, groundwater basins have been exploited to a considerable extent in a hardly state-regulated way.

In addition, the government built a lot of dams to store water for specific purposes, particularly in agriculture. However, this restricted the natural inflow into the country's groundwater basins in the downstream, in turn contributing to desertification and serious environmental issues like shrinkage of Lake Urmia, the world's second-largest salt lake in northwest Iran, and frequent dust and sand storms in recent years in the Khuzestan province in the southwest.

In the region around Tehran, the capital city of eight million inhabitants, the demand for water has also risen sharply due to the influx of many new inhabitants over the last four decades.

The number of wells there rose from just under 4000 in 1968 to more than 32.000 in 2012. In addition, there was a lack of rainfall in periods of drought, which have occurred more frequently in recent years. All of this has greatly lowered the groundwater level - in Tehran, for example, by twelve meters between 1984 and 2011.

In parts of Tehran, the surface has sunk by several meters
This poses another problem: the ground above the groundwater basins is sinking. Mahdi Motagh and Mahmud Haghshenas Haghighi from the Remote Sensing Section of the GFZ German Research Centre for Geosciences in Potsdam report on the magnitude of this effect in a study published in the journal Remote Sensing of Environment.

Using data from four different radar satellite systems, the two researchers measured the subsidence of the Earth's surface in the Tehran region. They found out that between 2003 and 2017 three areas sank there with rates of sometimes more than 25 centimetres per year, and several meters in total. For the first time, this study traces in detail and with precise measurements the temporal course of the subsidence in the region over a longer period of time.

Crevices in the ground and cracks in building walls are, for example, consequences of the deformations, say Haghshenas Haghighi and Motagh. They also found out that the groundwater basins in certain areas were irreversibly damaged by the exploitation.

In the future, they will no longer be able to store as much water as they used to. However, scientifically sound plans for water management could help defuse the situation, say the two researchers. "Science and research could support Iranian administrations and governments to revise their water management policy for a sustainable development," says Motagh.

Real-time data for geohazards
For their analysis, Haghshenas Haghighi and Motagh used the radar interferometry method InSAR (Interferometric Synthetic Aperture Radar). With this technique, high-precision radar signals in the microwave range recorded by satellites can be used to create images of the topography of the Earth's surface.

To document changes in the surface, the researchers used nine data sets from the satellite systems Envisat ASAR, ALOS PALSAR, TerraSAR-X and Sentinel-1 from 2003 to 2017. They combined the data sets to investigate the short and long-term responses of the Earth's surface to changes in groundwater levels.

Of particular importance were satellite images from the Sentinel-1 mission, which provides high-resolution radar images with a swath of 250 kilometers from the Tehran region every 24 days since 2014 and every 12 days since 2016. "This makes it possible to analyze geohazards, such as land subsidence, almost in real-time," says Motagh.

Next, the two researchers want to expand their area of research and measure the subsidence of the land outside Tehran using Sentinel-1. "The exploitation of such data to address subsidence over large areas brings new challenges that need to be tackled by developing advanced tools for mining of massive streams of radar images," says Haghshenas Haghighi.

Research Report: Haghshenas Haghighi, M. and Motagh M., 2018. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sensing of Environment. DOI: 10.1016/j.rse.2018.11.003


Related Links
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECTONICS
New study reveals connection between climate, life and the movement of continents
Austin TX (SPX) Nov 16, 2018
A new study by The University of Texas at Austin has demonstrated a possible link between life on Earth and the movement of continents. The findings show that sediment, which is often comprised from pieces of dead organisms, could play a key role in determining the speed of continental drift. In addition to challenging existing ideas about how plates interact, the findings are important because they describe potential feedback mechanisms between tectonic movement, climate and life on Earth. The st ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
US farmers more cautious than hopeful after China trade deal

Soil tilling, mulching key to China's potato crop

Floods ravage rice production in Niger's Diffa region

The tragedy of the commons - minus the tragedy

TECTONICS
New quantum materials could take computing devices beyond the semiconductor era

A new light on significantly faster computer memory devices

USC scientists find a way to enhance the performance of quantum computers

Colloidal quantum dots make LEDs shine bright in the infrared

TECTONICS
United Technologies contracted for F-35 engine logistics support

New-found debris believed from Flight MH370 handed to Malaysia govt

Lockheed Martin to study U.S. Navy F-35 operational capability

Northrop Grumman, Harris partner on jammers for the EA-18 Growler

TECTONICS
Madrid orders removal of electric scooters

Volkswagen says next generation of combustion engine cars to be its last

Luxury 'Red Flag' models buck China auto sales slump

China agrees to 'reduce and remove' tariffs on US cars: Trump

TECTONICS
Panama awards $1.4 bn bridge project to Chinese group

Portugal moving down Chinese silk road

China vows quick trade moves as US sends mixed signals

China vows quick trade moves, Trump upbeat

TECTONICS
Snowpack declines may stunt tree growth and forests' ability to store carbon emissions

Brazil's Bolsonaro blasts govt environmental agencies

Brazil loses 'one million football pitches' worth of forest

In Lebanon, climate change devours ancient cedar trees

TECTONICS
Macroscopic phenomena governed by microscopic physics

To image leaky atmosphere, NASA rocket team heads north

Earth needs climate 'reality check', space pioneer warns

Greenhouse gas detergent recycles itself in atmosphere

TECTONICS
How microscopic machines can fail in the blink of an eye

Stealth-cap technology for light-emitting nanoparticles

Nano-scale process may speed arrival of cheaper hi-tech products

Watching nanoparticles









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.