Subscribe free to our newsletters via your
. GPS News .




FLORA AND FAUNA
Why Species Matter
by Julie Cohen for UC Santa Barbara
Santa Barbara CA (SPX) Jun 24, 2014


Moorea, the site of research on coral reef ecosystems used in the UCSB study. Image courtesy Caitlin Fong.

UC Santa Barbara doctoral candidate Caitlin Fong travels to French Polynesia often but not for vacation. She goes there to study a coral reef ecosystem influenced by human impacts such as overfishing and nutrient pollution.

Her work focuses not only on biological changes but also methods scientists use to determine within-group group responses to ecological processes. The findings are published in ESA Ecology, a journal of the Ecological Society of America.

Fong and Peggy Fong, a professor in UCLA's Department of Ecology and Evolutionary Biology, conducted a study assessing the usefulness of functional form groups often used by community ecologists. The researchers examined the practice of grouping species with homogenous responses to major ecological forces as well as predicting group responses in established conceptual models.

They found that the two commonly used models for grouping coral reef macroalgae - the relative dominance model and the functional group model - failed to consistently generate groups that responded uniformly to experimental manipulations of key ecological processes.

"A lot of times, functional group forms are defined based on morphology and phylogeny," said Caitlin Fong, "but they are defined without empirical testing." Morphology comprises the specific structural features of organisms while phylogeny deals with their evolutionary relationships.

As an undergraduate, Caitlin Fong visited Moorea in 2010, just months after tropical cyclone Oli hit western French Polynesia. The storm was the final blow to the coral reef, already made vulnerable by an invasion of crown-of-thorns starfish, a coral predator.

"The reef had been subjected to a variety of stressors that caused the loss of coral dominance," she explained. "In fact, researchers think that increased fishing and changes in land use have resulted in reefs worldwide shifting from coral to macroalgae-dominant states."

The scientists conducted an experiment that controlled herbivore abundance and nutrient supply to see how those two forces interacted to shape macroalgae communities. They found that functional form groups were not able to capture the dynamics of what was happening on these reefs, particularly as they transitioned from coral to macroalgae dominance.

"It's not only important that things are shifting," Caitlin Fong said, "but when macroalgae is abundant, it seems logical to consider the species traits of the dominant spaceholders." She worked with the area's four most dominant species: Dictyota bartayresiana, Padina boryana, Galaxaura fasciculata and Halimeda opuntia.

"I've actually been back to Moorea every two years and the shift to these fleshy species of macroalgae has been even more extreme," she noted. "In 2010, Padina was a lot more contained in space but now it has carved a large part of the back reef area where we work."

The results showed that inappropriate functional form groupings altered the ability to detect important controlling factors. Scale also seemed to affect the detection of ecological processes. "This may be because different ecological processes act at different scales," Caitlin Fong said. "The resultant loss of information, in turn, masked strong interactions between herbivory and nutrients that were not included in the models."

The research attributes the limitations of existing models of functional form dominance to the rapid and catastrophic changes in ecosystems caused by humans, which have been documented worldwide. "We postulate that functional-group models may need to be reformulated to account for shifting baselines," she concluded.

"If you don't want to lose ecological resolution, you need to ensure that the defined groups that you use are true groups as opposed to arbitrary groups without underlying assumptions."

.


Related Links
UC Santa Barbara
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Animal trapping records reveal strong wolf effect across North America
Corvallis OR (SPX) Jun 24, 2014
Scientists have used coyote and red fox fur trapping records across North America to document how the presence of wolves influences the balance of smaller predators further down the food chain. From Alaska and Yukon to Nova Scotia and Maine, the researchers have demonstrated that a "wolf effect" exists, favoring red foxes where wolves are present and coyotes where wolves are absent. This e ... read more


FLORA AND FAUNA
China govt money paid for French vineyards: auditor

Straw albedo mitigates extreme heat

Reorganization of crop production and trade could save China's water supply

IDing Livestock Gut Microbes Contributing to Greenhouse Gas Emissions

FLORA AND FAUNA
Ultra-thin wires for quantum computing

Move Over, Silicon, There's a New Circuit in Town

Swell new sensors

Quantum computation: Fragile yet error-free

FLORA AND FAUNA
High-tech hot air balloon floats to 120,000 feet

Boeing signs agreements to broaden maintenance services

'Highly likely' MH370 on autopilot when it went down: Australia

Singapore tourism hit by MH370 mystery, Thai crisis

FLORA AND FAUNA
NMSU PACE team develops mobile transportation device

Hybrid Vehicles More Fuel Efficient In India, China Than in US

Google Android software spreading to cars, watches, TV

Toyota names price for new fuel cell car

FLORA AND FAUNA
China state copper firm chief jumps to his death: report

China eyeing further boost to Piraeus hub: premier

China to start direct yuan trade with British pound

China, Britain sign trade deals worth 14 bn pounds

FLORA AND FAUNA
Incentives as effective as penalties for slowing Amazon deforestation

Australian greens hail Tasmanian Wilderness decision

Conifers may give way to a more broad-leafed forest in the next century

Discovery of a bud-break gene could lead to trees adapted for a changing climate

FLORA AND FAUNA
Shifting land won't stop your journey

NASA's OCO-2 Will Track Our Impact on Airborne Carbon

ADS launches Radar Constellation Challenge with HisdeSAT

European Space Agency says magnetic north is drifting southward

FLORA AND FAUNA
Nanoscale composites improve MRI

DNA-Linked Nanoparticles Form Switchable "Thin Films" on a Liquid Surface

Targeting tumors using silver nanoparticles

Evolution of a Bimetallic Nanocatalyst




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.