GPS News  
SOLAR SCIENCE
Which way does the solar wind blow?
by Staff Writers
Austin TX (SPX) Jun 04, 2021

(Top panel, from left to right) July 12, 2012 coronal mass ejection seen in STEREO B Cor2, SOHO C2, and STEREO A Cor2 coronagraphs, respectively. (Bottom panel) The same images overlapped with the model results.

The surface of the sun churns with energy and frequently ejects masses of highly-magnetized plasma towards Earth. Sometimes these ejections are strong enough to crash through the magnetosphere - the natural magnetic shield that protects the Earth - damaging satellites or electrical grids. Such space weather events can be catastrophic.

Astronomers have studied the sun's activity for centuries with greater and greater understanding. Today, computers are central to the quest to understand the sun's behavior and its role in space weather events.

The bipartisan PROSWIFT (Promoting Research and Observations of Space Weather to Improve the Forecasting of Tomorrow) Act [https://www.govinfo.gov/content/pkg/BILLS-116s881enr/pdf/BILLS-116s881enr.pdf], passed into law in October 2020, is formalizing the need to develop better space weather forecasting tools.

"Space weather requires a real-time product so we can predict impacts before an event, not just afterward," explained Nikolai Pogorelov, distinguished professor of Space Science at The University of Alabama in Huntsville, who has been using computers to study space weather for decades. "This subject - related to national space programs, environmental, and other issues - was recently escalated to a higher level."

To many, space weather may seem like a distant concern, but like a pandemic - something we knew was possible and catastrophic - we may not realize its dangers until it's too late.

"We don't think about it, but electrical communication, GPS, and everyday gadgets can be effected by extreme space weather effects," Pogorelov said.

Furthermore, the U.S. is planning missions to other planets and the moon. All will require very accurate predictions of space weather - for the design of spacecraft and to alert astronauts to extreme events.

With funding from the National Science Foundation (NSF) and NASA, Pogorelov leads a team working to improve the state-of-the-art in space weather forecasting.

"This research, blending intricate science, advanced computing and exciting observations, will advance our understanding of how the Sun drives space weather and its effects on Earth," said Mangala Sharma, Program Director for Space Weather in the Division of Atmospheric and Geospace Sciences at NSF. "The work will help scientists predict space weather events and build our nation's resilience against these potential natural hazards."

The multi-institutional effort involves the Goddard and Marshall Space Flight Centers, Lawrence Berkeley National Laboratory, and two private companies, Predictive Science Inc. and Space Systems Research Corporation.

Pogorelov uses the Frontera supercomputer at the Texas Advanced Computing Center (TACC) - the ninth fastest in the world - as well as high performance systems at NASA and the San Diego Supercomputing Center, to improve the models and methods at the heart of space weather forecasting.

Turbulence plays a key role in the dynamics of the solar wind and coronal mass ejections. This complex phenomenon has many facets, including the role of shock-turbulence interaction and ion acceleration.

"Solar plasma is not in thermal equilibrium. This creates interesting features," Pogorelov said.

Writing in the Astrophysical Journal in April 2021, Pogorelov, along with Michael Gedalin (Ben Gurion University of the Negev, Israel), and Vadim Roytershteyn (Space Science Institute) described the role of backstreaming pickup ions in the acceleration of charged particles in the universe. Backstreaming ions, either of interstellar or local origin, are picked up by the magnetized solar wind plasma and move radially outwards from the Sun.

"Some non-thermal particles can be further accelerated to create solar energetic particles that are particularly important for space weather conditions on Earth and for people in space," he said.

Pogorelov performed simulations on Frontera to better understand this phenomenon and compare it with observations from Voyager 1 and 2, the spacecraft that explored the outer reaches of the heliosphere and are now providing unique data from the local interstellar medium.

One of the major focuses of space weather prediction is correctly forecasting the arrival of coronal mass ejections - the release of plasma and accompanying magnetic field from the solar corona - and determining the direction of the magnetic field it carries with it.

Pogorelov's team's study of backstreaming ions help to do so, as does work published in the Astrophysical Journal in 2020 that used a flux rope-based magnetohydrodynamic model to predict the arrival time to Earth and magnetic field configuration of the July 12, 2012 coronal mass ejection. (Magnetohydrodynamics refers the magnetic properties and behavior of electrically conducting fluids like plasma, which plays a key role in dynamics of space weather).

"Fifteen years ago, we didn't know that much about the interstellar medium or solar wind properties," Pogorelov said. "We have so many observations available today, which allow us to validate our codes and make them much more reliable."

Pogorelov is a co-investigator on an on-board component of the Parker Solar Probe called SWEAP (Solar Wind Electrons, Protons, and Alphas instrument). With each orbit, the probe approaches the sun, providing new information about the characteristics of the solar wind.

"Soon it will penetrate beyond the critical sphere where the solar wind becomes superfast magnetosonic, and we'll have information on the physics of solar wind acceleration and transport that we never had before," he said.

As the probe and other new observational tools become available, Pogorelov anticipates a wealth of new data that can inform and drive the development of new models relevant to space weather forecasting. For that reason, alongside his basic research, Pogorelov is developing a software framework that is flexible, useable by different research groups around the world, and can integrate new observational data.

"No doubt, in years to come, the quality of data from the photosphere and solar corona will be improved dramatically, both because of new data available and new, more sophisticated ways to work with data," he said. "We're trying to build software in a way that if a user comes up with better boundary conditions from new science missions, it will be easier for them to integrate that information."

Research Report: "Application of a modified spheromak model to simulations of coronal mass ejection in the inner heliosphere"


Related Links
University Of Texas At Austin, Texas Advanced Computing Center
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR SCIENCE
Reliable space weather forecasting
Neustrelitz, Germany (SPX) May 31, 2021
The auroras are beautiful manifestations of the stream of charged particles emitted by the Sun. But the Sun's plasma eruptions are more than a natural spectacle in the polar regions; they can also interfere with satellites. In extreme cases, space weather may even affect infrastructure on Earth. The Institute for Solar-Terrestrial Physics at the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) studies space weather and conducts research to enable scientists to better unders ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Insect pest eats into Lebanon's 'white gold' pine nut trade

Most food spending supports processing, not farmers: study

Solar geoengineering may be effective in alleviating impacts of global warming on crops

Swiss mired in poisonous row over pesticides

SOLAR SCIENCE
Covid driven chip shortage won't end any time soon

Japan approves chip development project with Taiwan's TSMC

Taiwan tech sector hit by coronavirus outbreak

Complex shapes of photons to boost future quantum technologies

SOLAR SCIENCE
State Department approves $3.5B sale of helicopters to Australia

Learjet nabs $464.8M contract for BACN program

United Airlines unveils plan to revive supersonic jet travel

Danish air force acquires two electric planes

SOLAR SCIENCE
Former boss to pay Volkswagen record sum over Dieselgate

Tesla scraps plan for ultra-luxe Plaid+ model

Dangerously trending: driverless Tesla videos on social media

Uber's British union deal gets mixed reception

SOLAR SCIENCE
Parking lots: Car space sells for $1.3m in Hong Kong

China mulls new law to fight foreign sanctions

Chinese exports up 28%, imports hit decade-high

China rebukes Biden for 'suppressing' Chinese firms with list

SOLAR SCIENCE
Brazilian Amazon deforestation hits record for May

Brazil leader promises Yanomami no unwanted mining on their lands

Brazil environment minister probed for timber trafficking

Ethiopia's Abiy kicks off massive tree-planting drive

SOLAR SCIENCE
World's largest Earth observation conference will come to Bonn in 2022

Hyperspectral Infrared Radiance data improves local severe storm forecasts using Hybrid OSSE method

China launches new meteorological satellite

Satellites show how Earth's water cycle is ramping up as climate warms

SOLAR SCIENCE
Nano-Bio Materials Consortium introduces new AFRL-Industry Co-Development Program

Nanostructured device stops light in its tracks

Scientists use DNA technology to build tough 3D nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.