GPS News  
STELLAR CHEMISTRY
Where neutrinos come from
by Staff Writers
Moscow, Russia (SPX) May 14, 2020

illustration only

Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space. The team compared the data on the elusive particles gathered by the Antarctic neutrino observatory IceCube and on long electromagnetic waves measured by radio telescopes.

Cosmic neutrinos turned out to be linked to flares at the centers of distant active galaxies, which are believed to host supermassive black holes. As matter falls toward the black hole, some of it is accelerated and ejected into space, giving rise to neutrinos that then coast along through the universe at nearly the speed of light.

The study came out in the Astrophysical Journal and is also available from the arXiv preprint repository.

Neutrinos are mysterious particles so tiny that researchers do not even know their mass. They pass effortlessly through objects, people, and even entire planets. High-energy neutrinos are created when protons accelerate to nearly the speed of light.

The Russian astrophysicists focused on the origins of ultra-high-energy neutrinos, at 200 trillion electron volts or more. The team compared the measurements of the IceCube facility, buried in the Antarctic ice, with a large number of radio observations. The elusive particles were found to emerge during radio frequency flares at the centers of quasars.

Quasars are sources of radiation at the centers of some galaxies. They are comprised by a massive black hole that consumes matter floating in a disk around it and spews out extremely powerful jets of ultrahot gas.

"Our findings indicate that high-energy neutrinos are born in active galactic nuclei, particularly during radio flares. Since both the neutrinos and the radio waves travel at the speed of light, they reach the Earth simultaneously," said the study's first author Alexander Plavin.

Plavin is a PhD student at Lebedev Physical Institute of the Russian Academy of Sciences (RAS) and the Moscow Institute of Physics and Technology. As such, he is one of the few young researchers to obtain results of that caliber at the outset of their scientific career.

Neutrinos come from where no one had expected
After analyzing around 50 neutrino events detected by IceCube, the team showed that these particles come from bright quasars seen by a network of radio telescopes around the planet. The network uses the most precise method of observing distant objects in the radio band: very long baseline interferometry. This method enables "assembling" a giant telescope by placing many antennas across the globe. Among the largest elements of this network is the 100-meter telescope of the Max Planck Society in Effelsberg.

Additionally, the team hypothesized that the neutrinos emerged during radio flares. To test this idea, the physicists studied the data of the Russian RATAN-600 radio telescope in the North Caucasus. The hypothesis proved highly plausible despite the common assumption that high-energy neutrinos are supposed to originate together with gamma rays.

"Previous research on high-energy neutrino origins had sought their source right 'under the spotlight.' We thought we would test an unconventional idea, with little hope of success. But we got lucky!" Yuri Kovalev from Lebedev Institute, MIPT, and the Max Planck Institute for Radio Astronomy commented.

"The data from years of observations on international radio telescope arrays enabled that very exciting finding, and the radio band turned out to be crucial in pinning down neutrino origins."

"At first the results seemed 'too good' to be true, but after carefully reanalyzing the data, we confirmed that the neutrino events were clearly associated with the signals picked up by radio telescopes," Sergey Troitsky from the Institute for Nuclear Research of RAS added.

"We checked that association based on the data of yearslong observations of the RATAN telescope of the RAS Special Astrophysical Observatory, and the probability of the results being random is only 0.2%. This is quite a success for neutrino astrophysics, and our discovery now calls for theoretical explanations."

The team intends to recheck the findings and figure out the mechanism behind the neutrino origins in quasars using the data from Baikal-GVD, an underwater neutrino detector in Lake Baikal, which is in the final stages of construction and already partly operational.

The so-called Cherenkov detectors, used to spot neutrinos - including IceCube and Baikal-GVD - rely on a large mass of water or ice as a means of both maximizing the number of neutrino events and preventing the sensors from accidental firing. Of course, continued observations of distant galaxies with radio telescopes are equally crucial to this task.


Related Links
Moscow Institute Of Physics And Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Radar and ice could help detect an elusive subatomic particle
Columbus OH (SPX) Mar 09, 2020
One of the greatest mysteries in astrophysics these days is a tiny subatomic particle called a neutrino, so small that it passes through matter - the atmosphere, our bodies, the very Earth - without detection. Physicists around the world have for decades been trying to detect neutrinos, which are constantly bombarding our planet and which are lighter than any other known subatomic particles. Scientists hope that by capturing neutrinos, they can study them and, hopefully, understand where they come ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Uber eyes deal for Grubhub to bolster food delivery: reports

China cuts Australian beef imports after warning against virus probe

Rising temperatures to accelerate growth of damaging plant pathogen

Hunter-gatherers in Africa were dairying as early as first millennium AD

STELLAR CHEMISTRY
A closer look at superconductors

NIST scientists create new recipe for single-atom transistors

Army researchers see path to quantum computing at room temperature

Smart chips for space

STELLAR CHEMISTRY
Virgin Group to sell shares of space venture to aid travel business

US approves helicopters to Egypt but says rights concerns remain

Officials at Tyndall AFB complete environmental assessment for rebuild effort

Japan receives its first V-22 Osprey tiltrotor aircraft

STELLAR CHEMISTRY
Trump backs Tesla on reopening after Musk defies order

China car sales begin recovery after virus plunge

Uber losses widen but appetite grows for Eats

How we might recharge an electric car as it drives

STELLAR CHEMISTRY
Asian equities mixed, fears of second wave keep traders on edge

US Senate threatens sanctions on China over COVID-19 accounting

China exempts more US goods from tariffs as virus hits economy

Europe's re-opening quickens, as Fauci warns of danger

STELLAR CHEMISTRY
With attention on virus, Amazon deforestation surges

Brazil to deploy army to fight Amazon deforestation

Look beyond rainforests to protect trees, scientists say

Deforestation in Africa accelerates: UN food agency

STELLAR CHEMISTRY
NASA CubeSat Mission to Gather Vital Space Weather Data

exactEarth joins Mayflower Autonomous Ship Project

Aeolus goes public with global wind data

A Radar for Plastic: High-Resolution Map of 1 km Grids to Track Plastic Emissions in Seas

STELLAR CHEMISTRY
Transporting energy through a single molecular nanowire

To make an atom-sized machine, you need a quantum mechanic

Magnetic nanoparticles help researchers remotely release adrenal hormones

New DNA origami motor breaks speed record for nano machines









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.