GPS News  
STELLAR CHEMISTRY
When not seeing is believing as Oumuamua mystery continues
by Staff Writers
Groningen. Netherlands (SPX) Nov 19, 2018

A better way to determine its size would be to measure thermal radiation, the amount of absorbed energy which 'Oumuamua sends back into space at infrared frequencies. That is where Spitzer and Mueller came in. Mueller works regularly with the team that studies asteroids using this infrared space telescope.

A year ago, astronomers identified the first interstellar visitor to our solar system. 'Oumuamua was studied by nearly every telescope available, including the ultra-sensitive Spitzer infrared space telescope. Despite a whopping 33 hours of observation time, 'Oumuamua proved too faint for Spitzer to see.

Nevertheless, this allowed the observation team to draw significant conclusions. Their analysis of the visitor was published online on 14 November by The Astronomical Journal. 'If other interstellar objects look like this, there is something wrong with our models of planetary formation', says University of Groningen astronomer Michael Mueller.

In October 2017, astronomers detected an asteroid-like object with a peculiar orbit. After several checks, it was confirmed that the object originated from outside our solar system and was already on its way out.

'The initial detection was made by the Pan-STARRS survey telescope, which is dedicated to finding asteroids which have an orbit that brings them close to the Earth', explains Michael Mueller. He works on the MIRI instrument of the new James Webb Space Telescope at SRON, the Netherlands Institute for Space Research, and at the University of Groningen Kapteyn Institute for Astronomy, but is also involved in studies of 'Near Earth Asteroids'.

Observation frenzy
The American Congress has given the space organization NASA the task of finding these asteroids, as they can pose a threat to life on Earth - as did the impact of the large asteroid that probably wiped out the dinosaurs.

'As a result, we now have telescopes dedicated to finding new objects in the sky', says Mueller. 'Previously, there were a few objects that appeared to come from outside the solar system, but each time additional observations ruled this out'. That was until October 2017, when the object now known as 'Oumuamua was the first to be confirmed as a visitor from interstellar space.

This sparked an observation frenzy among astronomers. 'The first results told us how much light the object reflected. The light curve showed large variations, which meant that the object was probably elongated and tumbling'. The length-to-width ratio was estimated to be 6:1, making it cigar shaped, although a pancake shape is also possible. However, the size could not be determined from the visible light reflection. 'The resolution was not good enough to measure it', Mueller adds.

Spitzer
A better way to determine its size would be to measure thermal radiation, the amount of absorbed energy which 'Oumuamua sends back into space at infrared frequencies. That is where Spitzer and Mueller came in. Mueller works regularly with the team that studies asteroids using this infrared space telescope.

'We have observation protocols for this kind of work and, based on models of asteroids and the data on visible light reflection, we calculated that 33 hours of observation time should give us valuable information'.

The team applied for 'Director's Discretionary Time' at Spitzer and after a rapid but thorough review, were given their 33 hours. 'That is a lot', remarks Mueller. 'Most astronomers would be very happy with just one hour on this telescope'.

In November 2017, a month after the discovery of 'Oumuamua, Spitzer was pointed towards the location of the object for a total of 33 hours. However, when the data were analysed, there was no sign of the object. 'But we know that even this was significant', explains Mueller. They could now set an upper limit for the amount of thermal radiation emitted by the object. The first conclusion was that it could not be very big, about 140 metres long at most. 'For a larger object, the thermal radiation would have been visible'.

Planet formation
A second conclusion was that the object could not emit much carbon monoxide or carbon dioxide, as these gases are very visible in the infrared frequencies that Spitzer observes. Such emissions would be expected from a comet-like object, and would also explain why 'Oumuamua was accelerating when it left the solar system: the emission of gas, induced by heat from the sun, would act as a propellant.

Mueller adds that 'Optical observations showed that it was not emitting much dust either, and dust comes off as water evaporates. So, it just did not look like a comet. It could be a standard rocky object, perhaps with a rough surface that would make it cooler'. Fine surface sand - like that found on the Moon - acts as an insulator and would have produced a warmer object.

This conclusion is unexpected. 'Interstellar objects are ejected from their own star system. This is easier for comet-like objects that form in the outer regions, where there are lots of volatiles', says Mueller.

So, an interstellar visitor is likely to contain volatiles. However, 'Oumuamua appeared to be a rocky object associated with the inner regions of a star system. Of course, it is the first interstellar object to be observed, so it might not be representative. 'But if other interstellar objects look like this, there is something wrong with our models of planet formation', Mueller concludes.

He has high hopes of observing more interstellar objects like 'Oumuamua in the near future. 'With increased monitoring for Near Earth Asteroids, we are bound to find more of these visitors from outside our own solar system'.

Research Report: Spitzer Observations of Interstellar Object 1I/'Oumuamua. Astronomical Journal, December 2018


Related Links
University of Groningen
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Gaia spots a 'ghost' galaxy next door
Cambridge UK (SPX) Nov 14, 2018
The Gaia satellite has spotted an enormous 'ghost' galaxy lurking on the outskirts of the Milky Way. An international team of astronomers, including from the University of Cambridge, discovered the massive object when trawling through data from the European Space Agency's Gaia satellite. The object, named Antlia 2 (or Ant 2), has avoided detection until now thanks to its extremely low density as well as a perfectly chosen hiding place, behind the shroud of the Milky Way's disc. The researchers hav ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Wolves at the door, Alpine shepherd can't imagine any other life

Greenpeace Poland files legal complaint against minister over pesticide use

Soil's history: A solution to soluble phosphorus?

Scientists debunk potential link to crop cold tolerance

STELLAR CHEMISTRY
Study opens route to ultra-low-power microchips

When electric fields make spins swirl

Bringing photonic signaling to digital microelectronics

China challenges US to provide 'evidence' in trade secrets case

STELLAR CHEMISTRY
Cathay apologises over data breach but denies cover-up

China Southern airline to exit SkyTeam alliance

Lockheed Martin awarded $22.7 billion F-35 Pentagon contract

Airbus delivers first A330 tanker aircraft to South Korea

STELLAR CHEMISTRY
Germany tweaks law to limit diesel car bans

Waymo to expand fledgling self-driving car service

German court orders diesel bans in Cologne, Bonn

Electriq~Global launches water-based fuel to power electric vehicles

STELLAR CHEMISTRY
'Substantial progress' made on massive China trade deal that excludes US

APEC summit: the Xi show by the sea shore

Trump to discuss trade war with Xi at G20 summit

Timeline for massive China-backed trade deal slips

STELLAR CHEMISTRY
Bolsonaro election leaves indigenous Brazilians afraid for their land

Large areas of the Brazilian rainforest at risk of losing protection

New Research: Streamside forests store tons of carbon

Global reforestation efforts need to take the long view

STELLAR CHEMISTRY
Chinese satellites provide advanced solutions to modeling small particles

Satellites encounter magnetic reconnection in Earth's magnetotail

Earth's magnetic field measured using artificial stars at 90 kilometers altitude

Alpine ice shows three-fold increase in atmospheric iodine

STELLAR CHEMISTRY
Stealth-cap technology for light-emitting nanoparticles

Nano-scale process may speed arrival of cheaper hi-tech products

Watching nanoparticles

Penn engineers develop ultrathin, ultralight nanocardboard









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.