Subscribe free to our newsletters via your
. GPS News .




WATER WORLD
When hungry, Gulf of Mexico algae go toxic
by Staff Writers
Washington DC (SPX) Mar 15, 2013


A red tide bloom off the coast of Florida. Blooms of Karenia brevis algae become more toxic when access to phosphorus is limited. Credit: Photo courtesy of the Florida Fish and Wildlife Research Institute.

When Gulf of Mexico algae don't get enough nutrients, they focus their remaining energy on becoming more and more poisonous to ensure their survival, according to a new study by scientists from North Carolina State University and the National Oceanic and Atmospheric Administration.

The study shows that harmful and ubiquitous Karenia brevis algae, which cause red tide blooms across the Gulf of Mexico, become two to seven times more toxic when levels of phosphorus, a major algal nutrient found in fertilizers and human waste, are low.

Like wearing a suit of armor, producing highly toxic cells allows the algae to defend themselves against opportunistic waterborne grazers like zooplankton.

Red tide blooms in the Gulf are linked to fish kills and other ecological and economic damage in the region, and are also linked to respiratory ailments in humans. These blooms occur annually in the Gulf, but it's hard to predict where or when they'll occur or how long they'll last.

Drs. Rance Hardison and Damian Shea, co-authors on a paper appearing online in the journal PLOS ONE, say that the findings could help coastal managers make better predictions about the harmful effects of red tide blooms.

"Public-health managers can test phosphorous levels in waters across various Gulf locations," Hardison said, "and know that low levels could indicate highly toxic red tide blooms. Then they can close nearby shellfish beds or take other measures to keep sea life - and humans - safe."

The researchers tested five different K. brevis species from varied geographic locations and limited some samples' growth by withholding phosphorus while allowing others to enjoy a full diet of phosphorus.

Depending on the species, algal cells with limited access to phosphorus had 2.3 to 7.3 times more toxin than algal cells that were filled up with phosphorous.

"At the end of a red tide bloom, when the nutrients are used up, K. brevis cells produce a burst of toxicity. Now we understand the biological mechanism behind some of the varied toxic levels seen in Gulf algal cells," Shea, an NC State professor of biology and environmental toxicology, said.

The irony of the inverse relationship between phosphorous and algal toxicity is not lost on the researchers. In a modern-day catch-22, excess nutrients like phosphorus and nitrogen play key roles in fueling algal growth and harmful algal bloom development.

As bloom density increases, cells use up the available nutrients such as phosphorous. This slows the growth of K. brevis cells causing them to become more toxic. Previous research conducted by Hardison, a NOAA oceanographer who received his Ph.D. from NC State, showed similar effects when nitrogen was the limiting nutrient.

"We believe the findings will be useful to help model future toxic algal blooms and how harmful they'll be," Hardison said.

Increased toxicity of Karenia brevis during phosphate limited growth: ecological and evolutionary implications; D. Ransom Hardison, William Sunda, R. Wayne Litaker, National Oceanic and Atmospheric Administration; Damian Shea, North Carolina State University; Published: March 12, 2013, online in PLOS ONE

.


Related Links
North Carolina State University
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Glaciers Contribute Significant Iron to North Atlantic Ocean
Cape Cod MA (SPX) Mar 15, 2013
All living organisms rely on iron as an essential nutrient. In the ocean, iron's abundance or scarcity means all the difference as it fuels the growth of plankton, the base of the ocean's food web. A new study by biogeochemists and glaciologists at Woods Hole Oceanographic Institution (WHOI) identifies a unexpectedly large source of iron to the North Atlantic - meltwater from glaciers and ... read more


WATER WORLD
Heat-stressed cows spend more time standing

Nature fans get green fix at Hong Kong flower show

European invader outcompetes Canadian plants outside usual temp range

Fertilizers could help tackle nutritional deficiency in African country

WATER WORLD
New distance record for 400 Gb/s data transmission

NIST mechanical micro-drum used as quantum memory

Quantum computing moves forward

Creating indestructible self-healing circuits

WATER WORLD
As F-35 costs soar, Boeing enters the fray

Boeing, KLM Demonstrate New Technologies to Optimize Flight

Singapore in 'final stages' of evaluating F-35

Embraer urges quick resolution of US contract challenge

WATER WORLD
Volkswagen eyes Chinese growth after record profits

Russian dashcams digital guardian angels for drivers

Americans still use phones while driving: survey

Answering messages behind the wheel is as dangerous as being twice over the limit

WATER WORLD
Kyrgyzstan PM to head gold mine talks

Chinese teaching growing in US, helped by Beijing

Myanmar's Suu Kyi faces flak for backing copper mine

EU says trade barriers in US, China, elsewhere hinder growth

WATER WORLD
Logging debris gives newly planted Douglas-fir forests a leg-up

Are tropical forests resilient to global warming?

Protected areas prevent deforestation in Amazon rainforest

Nations boost efforts to curb illegal logging

WATER WORLD
Significant reduction in temperature and vegetation seasonality over northern latitudes

GOCE: the first seismometer in orbit

Japan's huge quake heard from space: study

Space station to watch for Earth disasters

WATER WORLD
New technique could improve optical devices

Silver nanoparticles may adversely affect environment

Scientists delve deeper into carbon nanotubes

New taxonomy of platinum nanoclusters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement