. GPS News .




.
MARSDAILY
Wet and Mild: Caltech Researchers Take the Temperature of Mars' Past
by Staff Writers
Pasadena CA (JPL) Oct 13, 2011

The meteorite called ALH84001 is sliced to show its interior. Found in the Allan Hills ice field in Antarctica in 1984, the four-billion-year-old rock is one of the oldest in the world. The meteorite likely originated just below the surface of Mars. About 16 million years ago, another meteorite struck the area, blasting it off into space before it landed on Earth about 13,000 years ago. [Credit: NASA]

Researchers at the California Institute of Technology (Caltech) have directly determined the surface temperature of early Mars for the first time, providing evidence that's consistent with a warmer and wetter Martian past.

By analyzing carbonate minerals in a four-billion-year-old meteorite that originated near the surface of Mars, the scientists determined that the minerals formed at about 18 degrees Celsius (64 degrees Fahrenheit).

"The thing that's really cool is that 18 degrees is not particularly cold nor particularly hot," says Woody Fischer, assistant professor of geobiology and coauthor of the paper, published online in the Proceedings of the National Academy of Sciences (PNAS) on October 3. "It's kind of a remarkable result."

Knowing the temperature of Mars is crucial to understanding the planet's history-its past climate and whether it once had liquid water. The Mars rovers and orbiting spacecraft have found ancient deltas, rivers, lakebeds, and mineral deposits, suggesting that water did indeed flow. Because Mars now has an average temperature of -63 degrees Celsius, the existence of liquid water in the past means that the climate was much warmer then. But what's been lacking is data that directly points to such a history.

"There are all these ideas that have been developed about a warmer, wetter early Mars," Fischer says. "But there's precious little data that actually bears on it." That is, until now.

The finding is just one data point-but it's the first and only one to date. "It's proof that early in the history of Mars, at least one place on the planet was capable of keeping an Earthlike climate for at least a few hours to a few days," says John Eiler, the Robert P. Sharp Professor of Geology and professor of geochemistry, and a coauthor of the paper. The first author is Itay Halevy, a former postdoctoral scholar who's now at the Weizmann Institute of Science in Israel.

To make their measurement, the researchers analyzed one of the oldest known rocks in the world: ALH84001, a Martian meteorite discovered in 1984 in the Allan Hills of Antarctica. The meteorite likely started out tens of meters below the Martian surface and was blown off when another meteorite struck the area, blasting the piece of Mars toward Earth.

The potato-shaped rock made Wet and Mild: Caltech Researchers Take the Temperature of Mars's Pasts in 1996 when scientists discovered tiny globules in it that looked like fossilized bacteria. But the claim that it was extraterrestrial life didn't hold up upon closer scrutiny. The origin of the globules, which contain carbonate minerals, remained a mystery.

"It's been devilishly difficult to work out the process that generated the carbonate minerals in the first place," Eiler says. But there have been countless hypotheses, he adds, and they all depend on the temperature in which the carbonates formed. Some scientists say the minerals formed when carbonate-rich magma cooled and crystallized.

Others have suggested that the carbonates grew from chemical reactions in hydrothermal processes. Another idea is that the carbonates precipitated out of saline solutions. The temperatures required for all these processes range from above 700 degrees Celsius in the first case to below freezing in the last. "All of these ideas have merit," Eiler says.

Finding the temperature through independent means would therefore help narrow down just how the carbonate might have been formed. The researchers turned to clumped-isotope thermometry, a technique developed by Eiler and his colleagues that has been used for a variety of applications, including measuring the body temperatures of dinosaurs and determining Earth's climate history.

In this case, the team measured concentrations of the rare isotopes oxygen-18 and carbon-13 contained in the carbonate samples. Carbonate is made out of carbon and oxygen, and as it forms, the two rare isotopes may bond to each other-clumping together, as Eiler calls it. The lower the temperature, the more the isotopes tend to clump. As a result, determining the amount of clumping allows for a direct measurement of temperature.

The temperature the researchers measured-18 +/- 4 degrees Celsius-rules out many carbonate-formation hypotheses. "A lot of ideas that were out there are gone," Eiler says. For one, the mild temperature means that the carbonate must have formed in liquid water. "You can't grow carbonate minerals at 18 degrees other than from an aqueous solution," he explains.

The new data also suggests a scenario in which the minerals formed from water that filled the tiny cracks and pores inside rock just below the surface. As the water evaporated, the rock outgassed carbon dioxide, and the solutes in the water became more concentrated. The minerals then combined with dissolved carbonate ions to produce carbonate minerals, which were left behind as the water continued to evaporate.

Could this wet and warm environment have been a habitat for life? Most likely not, the researchers say. These conditions wouldn't have existed long enough for life to grow or evolve-it would have taken only hours to days for the water to dry up.

Still, these results are proof that an Earthlike environment once existed in at least one particular spot on Mars for a short time, the researchers say. What that implies for the global geology of Mars-whether this rock is representative of Martian history or is just an isolated artifact-is an open question.

The research described in the PNAS paper, "Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 +/- 4 degrees C in a near-surface aqueous environment," was supported by a Texaco Postdoctoral Fellowship, NASA, and the National Science Foundation.

Related Links
California Institute of Technology (Caltech)
Mars News and Information at MarsDaily.com
Lunar Dreams and more




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



MARSDAILY
Lockheed Martin Completes Primary Structure of NASA's MAVEN Spacecraft
Denver CO (SPX) Sep 27, 2011
NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has reached a new milestone. Lockheed Martin has completed building the primary structure of NASA's MAVEN spacecraft at its Space Systems Company facility near Denver. The Mars Atmosphere And Volatile EvolutioN (MAVEN) spacecraft is scheduled to launch in November 2013 and will be the first mission devoted to understanding the Martian ... read more


MARSDAILY
Energy, food security to dominate Rio+20: envoy

Which direction are herbicides heading

Burkina Faso says faces food crisis

Plant genomes may help next generation respond to climate change

MARSDAILY
Point defects in super-chilled diamonds may offer stable candidates for quantum computing bits

New knowledge about 'flawed' diamonds could speed the development of diamond-based quantum computers

Researchers Realize High-Power, Narrowband Terahertz Source at Room Temperature

Rice physicists move one step closer to quantum computer

MARSDAILY
Northrop Grumman Awarded Contract to Provide New Hybrid Navigation System for Cessna Business Jets

Embraer selects French component supplier

EU court backs bloc in airlines emissions fight

EU wins key round in carbon fight with airlines

MARSDAILY
China auto sales up 5.5% in September

Kicking hybrids out of carpool lanes backfires, slowing traffic for all

GM China sales up 15.3% in September

Crash-safe battery protection for electric cars

MARSDAILY
China's trade surplus narrows in September

eBay platform prime for Internet age shopping

China vendors 'riot' online over Taobao fee hike

South African wage deal aims to save textile jobs

MARSDAILY
New study shows how trees clean the air in London

Demonstrators in Bolivia resume march

International bodies to probe crackdown on Bolivia protest

Forest structure, services and biodiversity may be lost even as form remains

MARSDAILY
Astrium signs new Pleiades contract

New program to expand, enhance use of LIDAR sensing technology

Indra Tries In Madrid And Seville Space Technology To Detect Heat Islands

RADA Selected for a SAR Development Program

MARSDAILY
Molecular Depth Profiling Modeled Using Buckyballs and Low-Energy Argon

New form of superhard carbon observed

Pear-shaped 110-carat diamond to go under hammer

NIST polishes method for creating tiny diamond machines


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement