Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Weizmann Institute Scientists observe quantum effects in cold chemistry
by Staff Writers
Tel Aviv, Israel (SPX) Oct 12, 2012


illustration only

At very low temperatures, close to absolute zero, chemical reactions may proceed at a much higher rate than classical chemistry says they should - because in this extreme chill, quantum effects enter the picture.

A Weizmann Institute team has now confirmed this experimentally; their results would not only provide insight into processes in the intriguing quantum world in which particles act as waves, it might explain how chemical reactions occur in the vast frigid regions of interstellar space.

Long-standing predictions are that quantum effects should allow the formation of a transient bond - one that will force colliding atoms and molecules to orbit each other, instead of separating after the collision. Such a state would be very important, as orbiting atoms and molecules could have multiple chances to interact chemically. In this theory, a reaction that would seem to have a very low probability of occurring would proceed very rapidly at certain energies.

Dr. Ed Narevicius and his team in the Institute's Chemical Physics Department managed, for the first time, to experimentally confirm this elusive process in a reaction they performed at chilling temperatures of just a fraction of a degree above the absolute zero - 0.01K. Their results appeared this week in Science.

"The problem," says Narevicius, "is that in classical chemistry, we think of reactions in terms of colliding billiard balls held together by springs on the molecular level.

In the classical picture, reaction barriers block those billiard balls from approaching one another, whereas in the quantum physics world, reaction barriers can be penetrated by particles, as these acquire wave-like qualities at ultra-low temperatures."

The quest to observe quantum effects in chemical reactions started over half a century ago with pioneering experiments by Dudley Herschbach and Yuan T. Lee, who later received a Nobel Prize for their work. They succeeded in observing chemical reactions at unprecedented resolution by colliding two low-temperature, supersonic beams.

However, the collisions took place at relative speeds that were much too high to resolve many quantum effects: When two fast beams collide, the relative velocity sets the collision temperature at above 100K, much too warm for quantum effects to play a significant role.

Over the years, researchers had used various ingenious techniques, including changing the angle of the beams and slowing them down to a near-halt. These managed to bring the temperatures down to around 5K - close, but still a miss for those seeking to observe chemical reactions in quantum conditions.

The innovation that Narevicius and his team, including Alon B. Henson, Sasha Gersten, Yuval Shagam and Julia Narevicius, introduced was to merge the beams rather than collide them. One beam was produced in a straight line, and the second beam was bent using a magnetic device until it was parallel with the first.

Even though the beams were racing at high-speed, the relative speed of the particles in relation to the others was zero. Thus a much lower collision temperature of only 0.01 K could be achieved.

One beam contained helium atoms in an excited state, the other either argon atoms or hydrogen molecules. In the ensuing chemical reaction, the argon or hydrogen molecules became ionized - releasing electrons.

To see if quantum phenomena were in play, the researchers looked at reaction rates - a measure of how fast a reaction proceeds - at different collision energies. At high collision energies, classical effects dominated and the reaction rates slowed down gradually as the temperature dropped.

But below about 3K, the reaction rate in the merged beams suddenly took on peaks and valleys. This is a sign that a quantum phenomenon known as scattering resonances due to tunneling was occurring in the reactions.

At low energies, particles started behaving as waves: Those waves that were able to tunnel through the potential barrier interfered constructively with the reflected waves upon collision. This creates a standing wave that corresponds to particles trapped in orbits around one another. Such interference occurs at particular energies and is marked by a dramatic increase in reaction rates.

Narevicius: "Our experiment is the first proof that the reaction rate can change dramatically in the cold reaction regime. Beyond the surprising results, we have shown that such measurements can serve as an ultrasensitive probe for reaction dynamics. Our observations already prove that our understanding of even the simplest ionization reaction is far from complete; it requires a thorough rethinking and the construction of better theoretical models. We expect that our method will be used to solve many puzzles in reactions that are especially relevant to interstellar chemistry, which generally occurs at ultra-low temperatures."

.


Related Links
Weizmann Institute of Science
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Photonic gels are colorful sensors
Houston TX (SPX) Oct 11, 2012
Materials scientists at Rice University and the Massachusetts Institute of Technology (MIT) have created very thin color-changing films that may serve as part of inexpensive sensors for food spoilage or security, multiband optical elements in laser-driven systems and even as part of high-contrast displays. The new work led by Rice materials scientist Ned Thomas combines polymers into a uni ... read more


TECH SPACE
Struggling N. Ireland farmers get boost

Scientists Use New Method to Help Reduce Piglet Mortality

Unusual genetic structure confers major disease resistance trait in soybean

Unravelled mushroom genome offers many opportunities

TECH SPACE
Organic solar cells with high electric potential for portable electronics

MIT team builds most complex synthetic biology circuit yet

Origin of ultra-fast manipulation of domain walls discovered

Materials scientists prevent wear in production facilities in the electronics industry

TECH SPACE
Chile deploys Israel's RecceLite system

Quickstep moves on Hercules order

Boeing: Boeing Receives $2 Billion C-17 Aircraft Sustainment Contract

Two flights grounded in China after phone threats: airline

TECH SPACE
Tycoon offers Chinese cars for Japanese amid row

China's September auto sales fall on Japan row

Japan's Toyota to recall 7.43 mn vehicles globally

GM says China auto sales hit record in September

TECH SPACE
China exports jump but weakness seen ahead

Argentine mission to seek release of seized ship

Miners' strikes weaken S. African economy

Ghana 'violating intl norms' over ship: Argentina

TECH SPACE
Study finds nearly 50% of retail firewood infested with insects

Northern conifers youngest of the species

Climate change cripples forests

Semi-dwarf trees may enable a green revolution for some forest crop

TECH SPACE
Boeing Releases Updated Geospatial Data Management Tool

First images from e2v imaging sensors on SPOT 6 Earth observation satellite

New Commercial Imaging Spacecraft Progressing at Lockheed Martin as IKONOS Satellite Achieves 13 Years in Operations

SMOS has a better look at salinity

TECH SPACE
Queen's develops new environmentally friendly MOF production method

Drawing a line, with carbon nanotubes

Nano-hillocks: Of mountains and craters

Nanoparticles Glow Through Thick Layer of Tissue




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement