GPS News  
TIME AND SPACE
'Weighing' atoms with electrons
by Staff Writers
Vienna, Austria (SPX) Oct 14, 2016


Although atoms in graphene can be "seen" by shooting electrons through the material in what is called transmission electron microscopy, different isotopes can appear identical. Image courtesy Koponen and Hilden.

The different elements found in nature each have their distinct isotopes. For carbon, there are 99 atoms of the lighter stable carbon isotope 12C for each 13C atom, which has one more neutron in its nucleus. Apart from this natural variation, materials can be grown from isotope-enriched chemicals.

This allows scientists to study how the atoms arrange into solids, for example to improve their synthesis. Yet, most traditional techniques to measure the isotope ratio require the decomposition of the material or are limited to a resolution of hundreds of nanometers, obscuring important details.

In the new study, led by Jani Kotakoski, the University of Vienna researchers used the advanced scanning transmission electron microscope Nion UltraSTEM100 to measure isotopes in nanometer-sized areas of a graphene sample.

The same energetic electrons that form an image of the graphene structure can also eject one atom at a time due to scattering at a carbon nucleus. Because of the greater mass of the 13C isotope, an electron can give a 12C atom a slightly harder kick, knocking it out more easily. How many electrons are on average required gives an estimate of the local isotope concentration.

"The key to making this work was combining accurate experiments with an improved theoretical model of the process", says Toma Susi, the lead author of the study.

Publishing in Nature Communications allowed the team to fully embrace open science. In addition to releasing the peer review reports alongside the article, a comprehensive description of the methods and analyses is included.

However, the researchers went one step further and uploaded their microscopy data onto the open repository figshare. Anyone with an Internet connection can thus freely access, use and cite the gigabytes of high-quality images. Toma Susi continues: "To our knowledge, this is the first time electron microscopy data have been openly shared at this scale."

The results show that atomic-resolution electron microscopes can distinguish between different isotopes of carbon. Although the method was now demonstrated only for graphene, it can in principle be extended for other two-dimensional materials, and the researchers have a patent pending on this invention.

"Modern microscopes already allow us to resolve all atomic distances in solids and to see which chemical elements compose them. Now we can add isotopes to the list", Jani Kotakoski concludes.

Publication in Nature Communications: Isotope analysis in the transmission electron microscope: Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Meyer and Jani Kotakoski. Nature Communications | 7:13040 | DOI: 10.1038/ncomms13040.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Vienna
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Lights, action, electrons!
Onna, Japan (SPX) Oct 14, 2016
Ever since J.J. Thompson's 1897 discovery of the electron, scientists have attempted to describe the subatomic particle's motion using a variety of different means. Electrons are far too small and fast to be seen, even with the help of a light microscope. This has made measuring an electron's movement very difficult for the past century. However, new research from the Femtosecond Spectroscopy Un ... read more


TIME AND SPACE
Biodiversity is a natural crop pest repellent

People's tribunal accuses Monsanto of 'ecocide'

Invasive insects cost the world billions per year

Globalization hasn't affected what we grow and eat as much as you might think

TIME AND SPACE
Infrared brings to light nanoscale molecular arrangement

Researchers develop DNA-based single-electron electronic devices

Researchers use novel materials to build smallest transistor

Atomic sandwiches could make computers 100X greener

TIME AND SPACE
US claims trade victory over China over business jet tax

MH370 hunters to probe underwater objects: Australia

Poland plans new tender for helicopters after Airbus row

L-3 unit begins KC-10 tanker support

TIME AND SPACE
US judge 'strongly inclined' to back $15 bn VW settlement

Honda to build new China factory

Driverless taxi hits lorry in Singapore trial

Fractional order modeling may reduce electric car drivers' anxiety

TIME AND SPACE
EU sets Belgium ultimatum to back Canada trade deal

Tycoon Packer 'deeply concerned' for staff held in China

Bangladesh, China firms ink multi-bln deals as Xi ends tour

Crown shares dive as China detains high-roller chief

TIME AND SPACE
Deforestation in Amazon going undetected by Brazilian monitors

'Goldilocks fires' can enhance biodiversity in Western forests

Urban warming slows tree growth, photosynthesis

Emissions from logging debris in Africa may be vastly under estimated

TIME AND SPACE
Data improves hurricane forecasts, but uncertainties remain

NASA maps help gauge Italy earthquake damage

Magnetic oceans and electric Earth

DG's Basemap expanded to include 250M square kilometers at 30cm

TIME AND SPACE
Nanotechnology for energy materials: Electrodes like leaf veins

Electron beam microscope directly writes nanoscale features in liquid with metal ink

A 'nano-golf course' to assemble precisely nanoparticules

NIST-made 'sun and rain' used to study nanoparticle release from polymers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.