Subscribe free to our newsletters via your
. GPS News .




CARBON WORLDS
'Waviness' explains why carbon nanotube forests have low stiffness
by Staff Writers
Atlanta GA (SPX) Oct 03, 2013


Georgia Tech Ph.D. student Wei Chen, professor Suresh Sitaraman and Ph.D. student Nick Ginga (l-r) examine a carbon nanotube sample against a backdrop of scanning electron microscope images of carbon nanotubes. Credit: Georgia Tech Photo: Rob Felt.

A new study has found that "waviness" in forests of vertically-aligned carbon nanotubes dramatically reduces their stiffness, answering a long-standing question surrounding the tiny structures.

Instead of being a detriment, the waviness may make the nanotube arrays more compliant and therefore useful as thermal interface material for conducting heat away from future high-powered integrated circuits.

Measurements of nanotube stiffness, which is influenced by a property known as modulus, had suggested that forests of vertically-aligned nanotubes should have a much higher stiffness than what scientists were actually measuring. The reduced effective modulus had been blamed on uneven growth density, and on buckling of the nanotubes under compression.

However, based on experiments, scanning electron microscope (SEM) imaging and mathematical modeling, the new study found that kinked sections of nanotubes may be the primary mechanism reducing the modulus.

"We believe that the mechanism making these nanotubes more compliant is a tiny kinkiness in their structure," said Suresh Sitaraman, a professor in the Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. "Although they appear to be perfectly straight, under high magnification we found waviness in the carbon nanotubes that we believe accounts for the difference in what is measured versus what would be expected."

The research, which was supported by the Defense Advanced Research Projects Agency (DARPA), was published online August 31, 2013, in the journal Carbon. It will appear later in the journal's print edition.

Carbon nanotubes provide many attractive properties, including high electrical and thermal conductivity, and high strength. Individual carbon nanotubes have a modulus ranging from 100 gigapascals to 1.5 terapascals.

Arrays of vertically-aligned carbon nanotubes with a low density would be expected to a have an effective modulus of at least five to 150 gigapascals, Sitaraman said, but scientists have typically measured values that are four orders or magnitude less - between one and 10 megapascals.

To understand what might be causing this variation, Sitaraman and Ph.D. students Nicholas Ginga and Wei Chen studied forests of carbon nanotubes grown atop a silicon substrate, then covered the tips of the structures with another layer of silicon.

They then used sensitive test apparatus - a nanoindenter - to compress samples of the nanotubes and measure their stiffness. Alternately, they also placed samples of the silicon-nanotube sandwiches under tensile stress - pulling them apart instead of compressing them.

What they found was that the effective modulus remained low - as much as 10,000 times less than expected - regardless of whether the nanotube sandwiches were compressed or pulled apart. That suggests growth issues, or buckling, could not fully account for the differences observed.

To look for potential explanations, the researchers examined the carbon nanotubes using scanning electron microscopes located in Georgia Tech's Institute for Electronics and Nanotechnology facilities. At magnification of 10,000 times, they saw the waviness in sections of the nanotubes.

"We found very tiny kinks in the carbon nanotubes," said Sitaraman. "Although they appeared to be perfectly straight, there was waviness in them. The more waviness we saw, the lower their stiffness was."

They also noted that under compression, the nanotubes contact one another, influencing nanotube behavior. These observations were modeled mathematically to help explain what was being seen across the different conditions studied.

"We took into account the contact between the carbon nanotubes," said Chen. "This allowed us to investigate the extreme conditions under which the deformation of nanotubes is constrained by the presence of neighboring nanotubes in the forest."

Though the loss of modulus might seem like a problem, it actually may be helpful in thermal management applications, Sitaraman said. The compliance of the nanotubes allows them to connect to a silicon integrated circuit on one side, and be bonded to a copper heat spreader on the other side. The flexibility of the nanotubes allows them to move as the top and bottom structures expand and contract at different rates due to temperature changes.

"The beauty of the carbon nanotubes is that they act like springs between the silicon chip and the copper heat spreader," said Sitaraman. "They can conduct lots of heat because of good thermal properties, and at the same time, they are supple and compliant."

Carbon nanotubes have extraordinarily high thermal conductivity, as much as ten times that of copper, making them ideal for drawing heat away from the chips.

"The demand for heat removal from chips is continuing to increase," said Ginga. "Industry has been looking for new materials and new techniques to add to their toolbox for heat transfer. Different approaches will be needed for different devices, and this provides the industry with a new way to address the challenge."

Nicholas J. Ginga, Wei Chen and Suresh K. Sitaraman, "Waviness Reduces Effective Modulus of Carbon Nanotube Forests by Several Orders of Magnitude," (Carbon 2013).

.


Related Links
Georgia Institute of Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Researchers discover evidence to support controversial theory of 'buckyball' formation
Blacksburg VA (SPX) Sep 25, 2013
Researchers at the Virginia Tech Carilion Research Institute have reported the first experimental evidence that supports the theory that a soccer ball-shaped nanoparticle commonly called a buckyball is the result of a breakdown of larger structures rather than being built atom-by-atom from the ground up. Technically known as fullerenes, these spherical carbon molecules have shown great pro ... read more


CARBON WORLDS
Understanding soil nitrogen management using synchrotron technology

Protecting the weedy and wild kin of globally important crops

Hotpots and snake blood: Asia's libido-boosting foods

Farmers need help to plow through new food safety regulations

CARBON WORLDS
Researchers demonstrate 'accelerator on a chip'

Spirals of Light May Lead to Better Electronics

Promising new alloy for resistive switching memory

Counting on neodymium

CARBON WORLDS
Airbus delivers first A400M military transport plane

Japan chooses Mitsubishi Electric, IHI, MHI for F-35 parts

Indian negotiator for giant Rafale fighter deal dies

Argentina goes for second-hand jets for air force

CARBON WORLDS
Hong Kong's handcarts keep the city on a roll

US-made electric car tops new registrations in Norway

China, the global auto industry's best hope

Australia researchers unveil 'attention-powered' car

CARBON WORLDS
Mongolian parliamant passes new investment law: Xinhua

Taiwan envoy to meet China's Xi at APEC summit

China's Xi urges improved Southeast Asia ties in Indonesia speech

Tesco looks to China as profits dive in Europe

CARBON WORLDS
ForWarn follows rapidly changing forest conditions

Indonesia, EU seal pact to stop illegal timber exports

Seeing the forest and the trees

Uphill for the trees of the world

CARBON WORLDS
Flood maps from satellite data can help emergency response

Japan takes issue with Google maps over islands: reports

Australia's new prototype vehicle to improve Earth observation satellites' accuracy

UCLA scientists explain the formation of unusual ring of radiation in space

CARBON WORLDS
Densest array of carbon nanotubes grown to date

Nanoscale neuronal activity measured for the first time

Container's material properties affect the viscosity of water at the nanoscale

Molecules pass through nanotubes at size-dependent speeds




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement