Subscribe free to our newsletters via your
. GPS News .




BIO FUEL
Water heals a bioplastic
by Staff Writers
University Park PA (SPX) Sep 03, 2015


Watch a video of squid ring teeth derived plastic being cut in two and self healing with water and pressure. Image courtesy Demirel Lab, Penn State.

A drop of water self-heals a multiphase polymer derived from the genetic code of squid ring teeth, which may someday extend the life of medical implants, fiber-optic cables and other hard to repair in place objects, according to an international team of researchers.

"What's unique about this plastic is the ability to stick itself back together with a drop of water," said Melik Demirel, professor of engineering science and mechanics, Penn State. "There are other materials that are self healing, but not with water."

Demirel and his team looked at the ring teeth of squid collected around the world - in the Mediterranean, Atlantic, near Hawaii, Argentina and the Sea of Japan - and found that proteins with self-healing properties are ubiquitous. However, as they note in a recent issue of Scientific Reports, "the yield of this proteinaceous material from natural sources is low (about 1 gram of squid ring teeth protein from 5 kilograms of squid) and the composition of native material varies between squid species."

So as not to deplete squid populations, and to have a uniform material, the researchers used biotechnology to create the proteins in bacteria. The polymer can then either be molded using heat or cast by solvent evaporation.

The two-part material is a copolymer consisting of an amorphous segment that is soft and a more structured molecular architecture. The structured portion consists of strands of amino acids connected by hydrogen bonds to form a twisted and/or pleated sheet. This part also provides strength for the polymer, but the amorphous segment provides the self-healing.

The researchers created a dog-bone shaped sample of the polymer and then cut it in half. Using warm water at about 113 degrees Fahrenheit - slightly warmer than body temperature - and a slight amount of pressure with a metal tool, the two halves reunited to reform the dog-bone shape. Strength tests showed that the material after healing was as strong as when originally created.

"If one of the fiber-optic cables under the ocean breaks, the only way to fix it is to replace it," said Demirel. "With this material, it would be possible to heal the cable and go on with operation, saving time and money.

"Maybe someday we could apply this approach to healing of wounds or other applications," he said. "It would be interesting in the long run to see if we could promote wound healing this way so that is where I'm going to focus now."

Also working on this project at Penn State were Abdon Pena-Francesch and Huihun Jung, graduate students in engineering science and mechanics; and Carlos Pacheco, NMR spectroscopist. Others include Metin Sitti, Max Planck Institute at Stuttgart, Germany and Carnegie Mellon University; Veikko Sariola, former postdoctoral fellow at Carnegie Mellon University; and Murat Cetinkaya, BASF SE, Ludwigshafen, Germany. Sariola and Pena-Francesch were co-first authors of this paper.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Penn State
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Methanotrophs: Could bacteria help protect our environment?
Newcastle, UK (SPX) Sep 01, 2015
New insight into methanotrophs, bacteria that can oxidise methane, may help us develop an array of biotechnological applications that exploit methane and protect our environment from this potent greenhouse gas. Publishing in Nature, scientists led by Newcastle University have provided new understanding of how methanotrophs are able to use large quantities of copper for methane oxidation. T ... read more


BIO FUEL
Saving oysters by digging up their past

New peer-reviewed study rewrites genetic history of sheep

New fungi behind emerging wheat disease

Repurposing would-be wasted food to feed the hungry and create jobs

BIO FUEL
Modified bacteria become a multicellular circuit

Superlattice design realizes elusive multiferroic properties

A little light interaction leaves quantum physicists beaming

SK Hynix to invest $38 billion over 10 years

BIO FUEL
Confirmed MH370 wing part won't change search: Australia

China's Bohai to buy jet lessor Avolon in $7.6 bn deal

France confirms wing part found on Reunion is from MH370

Tu-160 Heavy Strategic Bomber Undergoes Major Upgrade

BIO FUEL
New York cabs get smart in battle with Uber

Toyota getting in gear with smart cars

Uber raises $1.2 bn for Chinese branch: source

Self-driving golf carts

BIO FUEL
China trade slumps as India eyes opportunities

China August trade slumps in latest setback

Taiwan exports plummet again as China demand weakens

Panama Canal cancels limits on cargo size after rain

BIO FUEL
Columbia engineers develop new approach to modeling Amazon seasonal cycles

Increasingly severe disturbances weaken world's temperate forests

Study: Tropical forests to disappear faster than expected

Boreal forests threatened by climate change

BIO FUEL
Russia to Develop Earth Remote-Sensing Satellite System for Iran

Sentinel-1A watching Jakobshavn glacier in action

Putting NASA Earth Data to Work

Sentinels catch river traffic jam

BIO FUEL
Nanoporous gold sponge makes DNA detector

Researchers use laser to levitate, glowing nanodiamonds in vacuum

Nanoparticles - small but unique

Making nanowires from protein and DNA




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.