Subscribe free to our newsletters via your
. GPS News .




ENERGY TECH
Waste to Watts: Improving Microbial Fuel Cells
by Richard Harth for ASU News
Tempe AZ (SPX) Jul 11, 2012


This graphic shows the basic setup for a microbial fuel cell. An MFC consists of an anode, a cathode, a proton or cation exchange membrane and an electrical circuit. Anode respiring bacteria cling to the anode of the MFC. In the course of their metabolic activity, these bacteria strip electrons from organic waste. The electrons then flow through a circuit to the cathode, producing electricity in the process, in addition to CO2 and water. Hydroxide or OH- ions are transported from the cathode into the surrounding electrolyte.

Some of the planet's tiniest inhabitants may help address two of society's biggest environmental challenges: how to deal with the vast quantities of organic waste produced and where to find clean, renewable energy. According to Cesar Torres and Sudeep Popat, researchers at Arizona State University's Biodesign Institute, certain kinds of bacteria are adept at converting waste into useful energy.

These microorganisms are presently being applied to the task, through an innovative technology known as a microbial fuel cell or MFC.

As Torres explains, "the great advantage of the microbial fuel cell is the direct conversion of organic waste into electricity. " In the future, MFC's may be linked to municipal waste streams or sources of agricultural and animal waste, providing a sustainable system for waste treatment and energy production.

To scale up the technology however, improvements in efficiency will be required. "My particular focus is to understand at a fundamental level how anode respiring bacteria transfer electrons from their cells onto an electrode," Popat says, "as well as to design new systems that are both economical and efficient."

The group was able to demonstrate that significant loss in MFC efficiency was due to reactions occurring at the fuel cell's cathode. By modifying materials used in the cathode, as well as adjusting pH levels, they were able to improve cathode performance.

The group's research results appeared recently in the journal ChemSusChem in a special issue devoted to MFC technology.

Torres and Popat work in Biodesign's Swette Center for Environmental Biotechnology, directed by ASU Regents' professor Bruce Rittmann-a co-author of the current study. Environmental biotechnology is a rapidly developing discipline in which disparate fields including microbiology, bioinformatics, chemistry, genomics, materials science, and engineering join together to harness biological entities-including bacteria-for the purpose of helping society.

Two chief areas of environmental biotechnology are bioremediation, or the clean up of environmental contaminants, and the production of clean energy. As the authors note, an MFC can perform double duty, targeting electrons from waste streams and converting them into useful energy.

An MFC is a unique kind of battery-part electrochemical cell, part biological reactor. Typically, it contains two electrodes, separated by an ion exchange membrane. On the anode side, bacteria grow and proliferate, forming a dense cell aggregate known as a biofilm that adheres to the MFC's anode. In the course of their microbial metabolism, the bacteria act as catalysts for converting the organic substrate into CO2, protons, and electrons.

Under natural conditions, many bacteria use oxygen as a final electron acceptor to produce water, but in the oxygen-free environment of the MFC, specialized bacteria that send the electrons to an insoluble electron acceptor, namely the MFC's anode, dominate.

The anode-respiring bacteria are able to oxidize organic pollutants, such as those found in waste streams, and transfer the electrons to the anode. The scavenged electrons then flow through an electrical circuit, terminating at the MFC's cathode, thus generating electricity. Ions are transported through the fuel cell's ion membrane, to maintain electroneutrality, although the membrane is often excluded. The basic setup is pictured in Figure 1.

In an effort to refine the technology and address losses in MFC efficiency, the group looked at the oxygen reduction reaction at the MFC cathode. While it had earlier been speculated that efficiency loss at the cathode was due to a low availability of protons, the new research showed instead that the transport of hydroxide ions (OH-) away from the catalyst layer of the cathode and into the surrounding liquid largely governed cathode potential losses in the device.

"We found that the cathodes were limiting the power densities we can produce in these MFCs," Popat says. "This is very surprising because, in chemical fuel cells, the same catalyst allows much greater power densities."

A key to the disparity lies in the fact that MFC's, unlike chemical fuel cells, must operate at neutral pH in the anode chamber to ensure optimum growth and activity of the microorganisms catalyzing the reactions. At the cathode, OH- ions cause a local increase in pH, due to a limiting rate of their transport. Further, every unit of pH increase at the cathode results in a loss of 59 millivolts of energy-the authors found that the local cathode pH could easily reach >12, representing a substantial loss.

To attempt to remedy this situation, the group conducted a detailed examination of transport properties at the cathode. An ion exchange binder contained in the cathode usually assists transport of ions to the surrounding electrolyte.

Normally, this binder is made from a material called Nafion, which the authors explain is good for transporting positively charged cations like protons, but a poor conductor of negatively charged anions like the hydroxide ions that accumulate at the MFC cathode, or anionic buffer species, such as phosphates and bicarbonates, that help transport OH- ions.

An experimental polymer known as AS-4, which has high anion-exchange capacity, was substituted for Nafion as a cathode binder in the study. The modification ensured the efficient transport of hydroxide ions and improved the performance of the cathode. The study showed that OH- transport could be further enhanced by adjusting pH directly, though the addition of CO2 mixed with air as a buffer for the cathode catalyst.

The study represents the first comprehensive analysis of cathode limitations in MFC's and will further the development of these systems through refinement of materials and operating conditions. "The main importance of our study is not to provide immediate answers, but to conduct a mechanistic study to determine how the cathode operates and identify the sources of inefficiency," Torres explains. "Now we can begin to work on solutions."

.


Related Links
Arizona State University's Biodesign Institute
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
New fuel cell keeps going after the hydrogen runs out
Boston MA (SPX) Jul 03, 2012
Imagine a kerosene lamp that continued to shine after the fuel was spent, or an electric stove that could remain hot during a power outage. Materials scientists at Harvard have demonstrated an equivalent feat in clean energy generation with a solid-oxide fuel cell (SOFC) that converts hydrogen into electricity but can also store electrochemical energy like a battery. This fuel cell can continue ... read more


ENERGY TECH
South African farmer equips sheep with cell phones

Study serves up healthy choice of rice

Brazil has laws that protect against "Big Food" and "Big Snack"

What's cooking? The UK's potential food crisis

ENERGY TECH
Toward Achieving One Million Times Increase in Computing Efficiency

Intel pumps billions into computer chip tool maker

Japan's Renesas eyes $550 mn savings, cutting 5,000 jobs

Discovery of material with amazing properties

ENERGY TECH
Boeing, Embraer clinch new partnership

Lockheed Martin Delivers Four F-35s To USAF And Marine Corps

Airbus wins aircraft orders potentially worth $5.4 bn

U.K. boosts up-armed Typhoon for Mideast

ENERGY TECH
EU push for car CO2 cuts faces industry, green criticism

China auto sales up 9.9% in June: industry group

1950s flying car for sale

Big German cars favoured in new EU car emission rules

ENERGY TECH
HSBC to apologise over lax money laundering controls: report

Bolivia mine in crisis after protest death

Merkel pushes EU, Southeast Asia free trade pact

40% of degree-holders from China, India in 2020: OECD

ENERGY TECH
Rising CO2 in atmosphere also speeds carbon loss from forest soils

Taiwan indicts loggers for axing 2000-year-old trees

Study Slashes Deforestation Carbon Emission Estimate

Scientists develop first satellite deforestation tracker for whole of Latin America

ENERGY TECH
New eyes in the sky

IGARSS 2012 - 'Remote Sensing for a Dynamic Earth'

MSG-3 set to ensure quality of Europe's weather service from geostationary orbit

Images in an Instant: Suomi NPP Begins Direct Broadcast

ENERGY TECH
Ferroelectricity on the Nanoscale

Unprecedented subatomic details of exotic ferroelectric nanomaterials

Tiny bubbles snap carbon nanotubes like twigs

Nanodiamonds cut through dirt to bring back 'bling' to low temperature laundry




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement