Subscribe free to our newsletters via your
. GPS News .




ABOUT US
War between bacteria and phages benefits humans
by Staff Writers
Boston MA (SPX) Sep 03, 2014


This image shows a woman leans over a source of water that is potentially contaminated with cholera bacteria. Image courtesy Centers for Disease Control and Prevention (CDC).

In the battle between our immune systems and cholera bacteria, humans may have an unknown ally in bacteria-killing viruses known as phages. In a new study, researchers from Tufts University, Massachusetts General Hospital, Partners In Health, Haiti's National Public Health Laboratory, and elsewhere, report that phages can force cholera bacteria to give up their virulence in order to survive.

Importantly, the study - published in eLife - found that cholera's mutational escape from phage predation occurs during human infection.

First author Kimberley Seed, Ph.D., and corresponding author Andrew Camilli, Ph.D., both of Tufts University School of Medicine, and their co-authors analyzed phage resistance properties and DNA sequences of cholera bacteria taken from phage-positive stool samples from patients with cholera in Haiti and Bangladesh, two countries where cholera outbreaks are common at present.

They first determined that cholera bacteria from Haiti changed its DNA in order to fight phages. They compared the bacteria from Haiti to bacteria from Bangladesh collected over many years to determine if the changes were happening on multiple occasions in both countries or only in isolated groups or cases.

The research team discovered that across both time and geography, the cholera bacteria mutated during human infection in order to trade their virulence, or ability to persist and make a human sick, for the ability to defend against the phages.

Alternatively, in some patients, the cholera bacteria mutated in a more conservative manner to retain virulence, yet sacrificed the ability to grow optimally in the environment. In either scenario, the cholera bacteria appear to have traded something important in order to survive the onslaught from phages.

"This is the first time we have seen cholera bacteria defend themselves from phages while infecting humans. This suggests that these phages are actively working in our favor, first by killing cholera bacteria within the patient, and second, by genetically weakening the bacteria that are shed by the infected patient such that they are less fit to survive in the environment or less able to cause infection in other people," said senior author Andrew Camilli, a Howard Hughes Medical Institute investigator, professor of molecular biology and microbiology at Tufts University School of Medicine, and member of the Molecular Microbiology program faculty at the Sackler School of Graduate Biomedical Sciences at Tufts University.

"This important finding suggests that we may be able to leverage the strength of phages for treating people with cholera or perhaps preventing cholera in people who may have been recently exposed as an alternative to antibiotics," he continued.

"Seeing this rapid evolutionary change in the cholera bacteria occurring during human infection suggests that the phages are posing a very strong threat. And to observe this in two different continents suggests that this is not a one-time find, but that it may be happening consistently during cholera outbreaks," said first author Seed, now assistant professor of molecular, cellular and developmental biology at University of Michigan.

"Additionally, virtually all bacteria can be infected by phages, which are found wherever bacteria are. So this finding with cholera may be the start of a broader understanding of how phages and bacteria evolve."

Previous work by Camilli and Seed, published last year in Nature, provided the first evidence that a phage could acquire a wholly functional and adaptive immune system.

They observed that the phage could use this acquired immune system to disarm a phage defense system of the cholera bacteria, allowing the phage to ultimately destroy its bacterial host.

This study bolstered the concept of using phage to prevent or treat bacterial infections, and extended the idea that phages can be extremely sophisticated bacterial predators.

The team is now investigating the details of this particular arms race between phage and bacteria in hopes of better understanding how phage influence cholera outbreaks and how we can further leverage phages to treat or prevent infections.

The World Health Organization reports that there are an estimated three-to five million cases of cholera cases and 100,000 to 120,000 deaths due to cholera each year. This summer, at least 67 people in Ghana have died of cholera while 6,000 others have been infected. In northern Cameroon, there are reports that 200 people have died and many more infected in the last few months.

A current outbreak in South Sudan has taken 130 lives out of a total of more than 5,800 cases. In Haiti, since the beginning of the epidemic there (October 2010) and through March of this year, more than 8,500 people have died, out of more than 700,000 reported cases.

Seed K.D., Yen M, Shapiro B.J., Hilaire I.J., Charles R.C., Teng J.E., Ivers L.C., Boncy J, Harris J.B., Camilli A. "Evolutionary consequences of intra-patient phage predation on microbial populations. eLife (August 26, 2014). DOI: http://dx.doi.org/10.7554/eLife.03497

.


Related Links
Tufts University, Health Sciences Campus
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ABOUT US
Extinctions during human era worse than thought
Providence RI (SPX) Sep 03, 2014
It's hard to comprehend how bad the current rate of species extinction around the world has become without knowing what it was before people came along. The newest estimate is that the pre-human rate was 10 times lower than scientists had thought, which means that the current level is 10 times worse. Extinctions are about 1,000 times more frequent now than in the 60 million years before pe ... read more


ABOUT US
Chinese scientists' team efforts in dissecting rice complex agronomic traits in recent years

Smart farming the key to China's food problems: study

New study charts the global invasion of crop pests

Water 'thermostat' could help engineer drought-resistant crops

ABOUT US
Breakthrough in light sources for new quantum technology

JILA team finds first direct evidence of 'spin symmetry' in atoms

Google working on super-fast 'quantum' computer chip

EU fines Samsung, Philips and Infineon over smartcard chip cartel

ABOUT US
Cobham touts fuel transfer equipment on A400M

Russian Helicopters upgrades assault/transport helos

First of 3 upgraded aerial tankers returned to France

F-35 hanger construction work contracted by Navy

ABOUT US
Ride-sharing could cut cabs' road time by 30 percent

Sweden court accepts receivership for Saab carmaker

France's Peugeot gets approval for China plant: report

China fines Japanese auto parts firms $200 mn for monopoly

ABOUT US
Russia's Putin follows China's Xi to Mongolia

Chinese brewer Tsingtao at lagerheads with competitors

Chile fines British-South African copper mine $4.5 million

China fines insurance firms $18 mn for price monopoly

ABOUT US
Brazil cracks 'biggest' Amazon deforestation gang

Brazil arrests 8 in Amazon deforestation swoop

World's primary forests on the brink

New analysis links tree height to climate

ABOUT US
NASA Radar System Surveys Napa Valley Quake Area

Algal Growth a Blooming Problem Space Station to Help Monitor

How might El Nino affect wildfires in California?

Unique Database of Satellite Images of Russia Exceeds 3.5 Mln Items

ABOUT US
New analytical technology reveals 'nanomechanical' surface traits

Engineers develop new sensor to detect tiny individual nanoparticles

Nanoscale assembly line

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.