Subscribe free to our newsletters via your
. GPS News .




ENERGY TECH
Vortex pinning could lead to superconducting breakthroughs
by Louise Lerner for ANL News
Argonne IL (SPX) Feb 25, 2013


This mosaic represents the distribution of superconductivity around holes (white) in a thin sheet of superconducting film. Green indicates strong superconductivity. Further away from the holes, the superconductivity decreases (yellow, red and finally black, where the material is densely populated with vortices that interfere with superconductivity.

A team of researchers from Russia, Spain, Belgium, the U.K. and the U.S. Department of Energy's (DOE) Argonne National Laboratory announced findings last week that may represent a breakthrough in applications of superconductivity.

The team discovered a way to efficiently stabilize tiny magnetic vortices that interfere with superconductivity-a problem that has plagued scientists trying to engineer real-world applications for decades. The discovery could remove one of the most significant roadblocks to advances in superconductor technology.

Superconductors are extremely useful materials, given that modern society involves moving a lot of electricity around. Each time we do it, whether it be along the cord from the outlet to your lamp or in the millions of miles of power lines strung across the country, we lose a little bit of electricity. That effect is due to resistance in the wires we currently use to transport electricity. Even a pretty good conductor, like copper wire, loses some electricity due to resistance.

But in an ideal superconductor, no electricity is ever lost. If you set up a loop of perfect superconducting wire and added some current, it would circle that loop forever. Superconductors are the secret behind MRI machines, Maglev trains and improved cell phone reception.

The problem is that superconductors have to be cooled to do their thing. Even the "high-temperature" superconductors already discovered have to be chilled to -280 Fahrenheit. That creates a lot of engineering and logistical problems.

In the long run, scientists are hoping to develop superconducting materials that would operate closer to room temperature. That would be a major achievement-though it is generally still thought to be a long way off.

In the meantime, there remain key problems of superconductivity that need to be solved even in the low-temperature environment.

One such major problem is posed by magnetic fields. When magnetic fields reach a certain strength, they cause a superconductor to lose its superconductivity. But there is a type of superconductor-known as "Type II"-which is better at surviving in relatively high magnetic fields.

In these superconductors, magnetic fields create tiny whirlpools or "vortices." Superconducting current continues to travel around these vortices to a point, but eventually, as the magnetic field strengthens, the vortices begin to move about and interfere with the material's superconductivity, introducing resistance.

"These vortices dissipate the energy when moving under applied currents and bury all hopes for a technological revolution-unless we find ways to efficiently pin them," said Argonne Distinguished Fellow Valerii Vinokur, who co-authored the study.

Scientists have spent a lot of time and effort over the past few decades trying to immobilize these vortices, but until now, the results have been mixed. They found ways to pin down the vortices, but these only worked in a restricted range of low temperatures and magnetic fields.

Vinokur and his colleagues, however, discovered a surprise. They began with very thin superconducting wires-just 50 nanometers in diameter. (A stack of 2,000 of these wires would equal the height of a sheet of paper.) These thin wires can accommodate only one row of vortices. When they applied a high magnetic field, the vortices crowded together in long clusters and stopped moving. Increasing the magnetic field restored the material's superconductivity, instead of destroying it.

Next, the team carved superconducting film into an array of holes so that only a few vortices could squeeze between the holes, where they stayed, unable to interfere with current.

The resistance of the superconductor dropped dramatically-at temperatures and magnetic fields where no one has been able to pin vortices before. "The results were quite striking," Vinokur said.

The team has only experimented with low-temperature superconductors so far, Vinokur said, "but there is no reason why the approach we used should be restricted to just low-temperature superconductors."

The paper, "Magnetic field-induced dissipation-free state in superconducting nanostructures," is published this week in Nature Communications. Vinokur and Tatyana Baturina, a visiting scientist at Argonne, authored the paper, along with researchers from the A.B. Rzhanov Institute of Semiconductor Physics in Russia, the Autonomous University of Madrid and the University of Zaragoza in Spain, the University of Bristol in the U.K. and the Interuniversity Microelectronics Centre in Belgium.

.


Related Links
Argonne National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Dopants dramatically alter electronic structure of superconductor
Upton, NY (SPX) Feb 22, 2013
Over the last quarter century, scientists have discovered a handful of materials that can be converted from magnetic insulators or metals into "superconductors" able to carry electrical current with no energy loss-an enormously promising idea for new types of zero-resistance electronics and energy-storage and transmission systems. At present, a key step to achieving superconductivity (in a ... read more


ENERGY TECH
Bees attracted to contrasting colors when looking for nectar

Anthropologist studies cattle ranchers in Brazilian Amazon

Thirsty crops and hungry people: Symposium to examine realities of water security

Experimental vaccine offers improved protection for poultry

ENERGY TECH
Building a biochemistry lab on a chip

Cell circuits remember their history

New materials may be computer breakthrough

Researchers create 'building block' of quanutm networks

ENERGY TECH
F-35 flights should resume soon: Pentagon official

US military halts test flights for F-35 fighter

First F-35 Production Model Takes Flight

NASA Seeks It All: High Lift, Low Drag

ENERGY TECH
Mobile apps reshape urban taxi landscape

Estonia plugs electric cars as power prices soar

China's Geely to set up research centre in Sweden

Bridgestone reports soaring annual profit

ENERGY TECH
Four Chinese drivers jailed over Singapore strike

China 2012 gold output up nearly 12%: report

Sharp to suspend tie-up talks with Hon Hai: report

Hong Kong unveils new bid to cool property market

ENERGY TECH
Turkmenistan to plant 3 million trees to make desert bloom

Decoys could blunt spread of ash-killing beetles

Wetland trees a significant overlooked source of methane

Lungs of the planet reveal their true sensitivity to global warming

ENERGY TECH
Tiny CREPT Instrument to Study the Radiation Belts

USGS Ready To Start Landsat 8 Science Program

Orbital-Built Landsat Satellite Launched

LDCM 'Doing Great' in Orbit

ENERGY TECH
New taxonomy of platinum nanoclusters

Nano-machines for 'bionic proteins'

Forging a new periodic table using nanostructures

Team Creates MRI for the Nanoscale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement