GPS News  
CHIP TECH
'Virtual' interferometers may overcome scale issues for optical quantum computers
by Staff Writers
Melbourne, Australia (SPX) Apr 04, 2017


Measurement-based linear optics implements a huge multi-mode interferometer consisting of beamsplitters (green) and phase delays (blue). The size of the virtual interferometer can be many hundreds or thousands of optical elements, despite the small size of the physical experiment. Image courtesy R Alexander et al/APS.

It's not the size of the interferometer that matters; it's how you use it. So claim a team of researchers from RMIT University, the University of Sydney and University of Technology Sydney, who have devised an entirely new way of implementing large-scale interferometers that will dramatically miniaturise optical processing circuitry.

The team, in a paper published in Physical Review Letters, has shown that a small-scale physical interferometer can do the work of a much larger one by leveraging recent breakthrough results in quantum information. The technique has been dubbed 'measurement-based linear optics'.

"A clear advantage of our approach is that it harnesses existing compact methods for generating large-scale cluster states - a resource for quantum computing," says lead author Dr Nicolas Menicucci.

"Six beamsplitters and a few squeezed light sources give us the potential to access virtual optical networks of an immense size."

According to first author Dr Rafael Alexander, engineering conventional interferometers that comprise hundreds or even thousands of optical elements is a daunting but important task that is essential to implementing fully-functional optical quantum computers.

"We found a new approach to dealing with this problem by drawing inspiration from quantum teleportation," says Dr Alexander.

"Measurement-based linear optics circumvents many of the challenges facing the conventional optics approach by using large virtual interferometers instead of physical ones. By applying of a specific sequence of measurements to a continuous-variable cluster state, the measurements themselves program and implement the interferometer," he said.

"We use a gigantic cluster state composed of modes of light correlated in time or frequency, which can be generated using just one or two optical parametric oscillators (which implement optical squeezing) and just a handful of beamsplitters."

The team's experimental collaborators have already demonstrated the technology, yielding cluster states composed of more than 1 million entangled modes.

"Measurement-based linear optics has the potential to reshape how we think about the interference of light," says Dr Menicucci.

"It ports the demonstrated scalability of continuous-variable cluster states to the broad range of linear-optics applications."

The paper also details a technique to overcome the usual noise (distortion) faced by any 'virtual' approach like this one by converting this noise into simple photon loss, which is easier to handle. This opens the door to new approaches for combatting noise - a major challenge facing all large-scale quantum computing platforms.

Research paper

CHIP TECH
Advances make reduced graphene oxide electronics feasible
Raleigh NC (SPX) Mar 31, 2017
Researchers at North Carolina State University have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices. "Graphene is extremely conductive, but is not a semiconductor; graphene oxide has a bandgap like a ... read more

Related Links
Centre for Quantum Computation and Communication Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
EU approves Syngenta-ChemChina mega-deal

Newly characterized protein has potential to save US farmers millions annually

A slice of luxury: Hong Kong's high-end fruit fad

Making cows more environmentally friendly

CHIP TECH
Researchers find a way to scale production of printable electronics

Advances make reduced graphene oxide electronics feasible

'Virtual' interferometers may overcome scale issues for optical quantum computers

Quantum communication: How to outwit noise

CHIP TECH
DARPA Completes Testing of Subscale Hybrid Electric VTOL X-Plane

Super Pressure Balloon Flight Enables Pioneering Infrasound Study

Hornet, Growler foreign customers to receive data updates

Ukraine's AN-132D takes historic first flight

CHIP TECH
Renewable energy needed to drive uptake of electric vehicles

Ford boosts research in Canada for connected cars

Tesla tops quarterly sales forecast

NASA Kennedy Partners to Help Develop Self-driving Cars

CHIP TECH
Developing Asia to fuel global growth but risks ahead: ADB

China plan for new economic zone sparks real estate frenzy

WTO creates panel to decide on China, EU trade flap

Wary Trump and Xi measure each other up at US summit

CHIP TECH
First world survey finds 9,600 tree species risk extinction

Emissions from the edge of the forest

Methane emissions from trees

Forests fight global warming in many ways

CHIP TECH
As CO2 levels increase, airplane rides get bumpier

Monitoring pollen using an aircraft

How Britain became an island

Exploring ocean waters to characterize atmospheric aerosols

CHIP TECH
Platelets instead of quantum dots

How nanoparticles affect flow through porous stuff in surprising ways

Nanoscopic golden springs change color of twisted light

New Nano Devices Could Withstand Extreme Environments in Space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.