GPS News  
CHIP TECH
Valleytronics discovery could extend limits of Moore's Law
by Staff Writers
Berkeley CA (SPX) May 02, 2018

Valleytronics utilizes different local energy extrema (valleys) with selection rules to store 0s and 1s. In SnS, these extrema have different shapes and responses to different polarizations of light, allowing the 0s and 1s to be directly recognized. This schematic illustrates the variation of electron energy in different states, represented by curved surfaces in space. The two valleys of the curved surface are shown.

Research appearing in Nature Communications finds useful new information-handling potential in samples of tin(II) sulfide (SnS), a candidate "valleytronics" transistor material that might one day enable chipmakers to pack more computing power onto microchips.

The research was led by Jie Yao of the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and Shuren Lin of UC Berkeley's Department of Materials Science and Engineering and included scientists from Singapore and China. Berkeley Lab's Molecular Foundry, a DOE Office of Science user facility, contributed to the work.

For several decades, improvements in conventional transistor materials have been sufficient to sustain Moore's Law - the historical pattern of microchip manufacturers packing more transistors (and thus more information storage and handling capacity) into a given volume of silicon.

Today, however, chipmakers are concerned that they might soon reach the fundamental limits of conventional materials. If they can't continue to pack more transistors into smaller spaces, they worry that Moore's Law would break down, preventing future circuits from becoming smaller and more powerful than their predecessors.

That's why researchers worldwide are on the hunt for new materials that can compute in smaller spaces, primarily by taking advantage of the additional degrees of freedom that the materials offer - in other words, using a material's unique properties to compute more 0s and 1s in the same space. Spintronics, for example, is a concept for transistors that harnesses the up and down spins of electrons in materials as the on/off transistor states.

Valleytronics, another emerging approach, utilizes the highly selective response of candidate crystalline materials under specific illumination conditions to denote their on/off states - that is, using the materials' band structures so that the information of 0s and 1s is stored in separate energy valleys of electrons, which are dependent on the crystal structures of the materials.

In this new study, the research team has shown that tin(II) sulfide (SnS) is able to absorb different polarizations of light and then selectively reemit light of different colors at different polarizations. This is useful for concurrently accessing both the usual electronic - and the material's valleytronic - degrees of freedom, which would substantially increase the computing power and data storage density of circuits made with the material.

"We show a new material with distinctive energy valleys that can be directly identified and separately controlled," said Yao. "This is important because it provides us a platform to understand how valley signatures are carried by electrons and how information can be easily stored and processed between the valleys, which are of both scientific and engineering significance."

Lin, the first author of the paper, said the material is different from previously investigated candidate valleytronics materials because it possesses such selectivity at room temperature without additional biases apart from the excitation light source, which alleviates the previously stringent requirements in controlling the valleys. Compared to its predecessor materials, SnS is also much easier to process.

With this finding, researchers will be able to develop operational valleytronic devices, which may one day be integrated into electronic circuits. The unique coupling between light and valleys in this new material may also pave the way toward future hybrid electronic/photonic chips.

Berkeley Lab's "Beyond Moore's Law" initiative leverages the basic science capabilities and unique user facilities of Berkeley Lab and UC Berkeley to evaluate promising candidates for next-generation electronics and computing technologies.

Its objective is to build close partnerships with industry to accelerate the time it typically takes to move from the discovery of a technology to its scale-up and commercialization.

Research Report: "Accessing valley degree of freedom in bulk Tin(II) sulfide at room temperature"


Related Links
Lawrence Berkeley National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Cell membrane inspires new ultrathin electronic film
Tokyo, Japan (SPX) Apr 30, 2018
Japanese researchers have developed a new method to build large areas of semiconductive material that is just two molecules thick and a total of 4.4 nanometers tall. The films function as thin film transistors, and have potential future applications in flexible electronics or chemical detectors. These thin film transistors are the first example of semiconductive single molecular bilayers created with liquid solution processing, a standard manufacturing process that minimizes costs. "We want to giv ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Mediterranean fears bitter future for citrus crops

South Africa wine production drying up in water crisis

How NASA and John Deere Helped Tractors Drive Themselves

US treaty with Native Americans put to test in Supreme Court salmon case

CHIP TECH
From insulator to conductor in a flash

Water-repellent surfaces can efficiently boil water, keep electronics cool

NIST team shows tiny frequency combs are reliable measurement tools

Cell membrane inspires new ultrathin electronic film

CHIP TECH
Lockheed contracted for F-35 support for Navy, Italy

Northrop Grumman to support Japan's E-2C Hawkeye

State Dept. approves $1.2B sale of helicopters, missiles to Mexico

Northrop to repair technology on Hawkeyes, Lockheed to upgrade C-130 aircraft

CHIP TECH
China's electric carmakers bloom at Beijing auto show

Can fish school cars in how to drive together?

Global carmakers show off SUVs, electrics as China pledges reforms

Volkswagen makes 15-bn-euro bet on EVs in China; Auto show opens

CHIP TECH
China warns US against causing 'damage' to trade in Huawei probe

Labor unions face hard road in Silicon Valley

China manufacturing activity slows in April

Canada's Freeland skips NATO to pursue NAFTA deal

CHIP TECH
Billions of gallons of water saved by thinning forests

Warming climate could speed forest regrowth in eastern US

Warming climate could speed forest regrowth in eastern US

Poland illegally cut down ancient forest, EU court rules

CHIP TECH
Sentinel-3B on launch pad

New camera tech reveals underwater ecosystems from above

Satellite imagery sheds light on agricultural water use

Eye in the Sky: Bill Gates Backs Real Time Global Satellite Surveillance Network

CHIP TECH
Course set to overcome mismatch between lab-designed nanomaterials and nature's complexity

This 2-D nanosheet expands like a Grow Monster

Robot developed for automated assembly of designer nanomaterials

A treasure trove for nanotechnology experts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.