GPS News  
INTERNET SPACE
Using plasmonics to transmit more data
by Staff Writers
Evanston IL (SPX) Feb 26, 2016


A plasmon is a quantum particle that arises from collective oscillations of free electrons. By controlling the plasmons, researchers can enable optical switches, potentially permitting signals in optical fibers to be switched from one circuit to another - with ultimate high speeds in the terahertz.

Merely a decade ago, people were amazed that their cellular phones could send a simple text message. Now smartphones send and receive high-resolution photographs, videos, emails with large attachments, and much more. The desire for endless data has become insatiable.

"The ability to deliver information from one location to another has played a very important role in advancing human civilization," said Robert P.H. Chang, professor of materials science and engineering at Northwestern Engineering. "Today, we live in a digital world where the demand for the ability to transmit large amounts of data is growing exponentially."

To meet this high demand, Chang and his team developed a means to modulate light signals in the near-infrared wavelength region. Their work demonstrates a new scheme to control infrared plasmons, opening a new door for transmitting massive amounts of information.

The research appeared online in the Nature Photonics. Peijun Guo, a senior PhD student in Chang's laboratory, is the paper's first author.

A plasmon is a quantum particle that arises from collective oscillations of free electrons. By controlling the plasmons, researchers can enable optical switches, potentially permitting signals in optical fibers to be switched from one circuit to another - with ultimate high speeds in the terahertz.

Researchers have demonstrated active plasmonics in the ultraviolet to visible wavelength range using noble metals, such as gold. But controlling plasmons in the near- to mid-infrared spectral range - where noble materials suffer from excessive optical losses - is largely unexplored. Research in this area has recently attracted significant attention for its importance in telecommunications, thermal engineering, infrared sensing, light emission and imaging.

Chang's team successfully controlled plasmons in this technologically important range by using indium-tin-oxide (ITO) nanorod arrays. The low electron density of ITO enables a substantial redistribution of electron energies, which results in light signal modulation with very large absolute amplitude.

By tailoring the geometry of the ITO nanorod arrays, researchers could further tune the spectral range of the signal modulation at will, which opens the door for improved telecommunications and molecular sensing.

"Our results pave the way for robust manipulation of the infrared spectrum," Chang said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
Internet by light promises to leave Wi-Fi eating dust
Barcelona (AFP) Feb 23, 2016
Connecting your smartphone to the web with just a lamp - that is the promise of Li-Fi, featuring Internet access 100 times faster than Wi-Fi with revolutionary wireless technology. French start-up Oledcomm demonstrated the technology at the Mobile World Congress, the world's biggest mobile fair, in Barcelona. As soon as a smartphone was placed under an office lamp, it started playing a vid ... read more


INTERNET SPACE
60 years after pioneering survey, Wisconsin prairies are changing rapidly

Eating less beef key to meeting EU climate targets: study

Feeding a city with better food sources

How hunter-gatherers preserved their food sources

INTERNET SPACE
Topological insulators: Magnetism is not causing loss of conductivity

Chipmaker Marvell pays $750 to settle patent suit

Scientists create ultrathin semiconductor heterostructures for new technologies

Scientists train electrons with microwaves

INTERNET SPACE
Rolls-Royce to supply MV-22 aircraft engines for U.S., Japan

Trump warns of Boeing plant going to China

NASA Aeronautics Budget Proposes Return of X-Planes

Boeing wins $1.3 bn buy commitment from China's Okay Airways

INTERNET SPACE
VW faces huge US lawsuit over pollution cheating

Some distractions while driving are more risky than others

Uber defends driver scrutiny in wake of shooting

Volkswagen chief predicts 'renaissance' in US business

INTERNET SPACE
Turkey suspends contested gold mine project after protests

Chinese firm aims to start production at flashpoint Myanmar mine

Ride and home sharing painted as old ideas made new

Bolivia alleges US plot against China trade deals

INTERNET SPACE
Benefits of re-growing secondary forests explored through international collaboration

Drones learn to search forest trails for lost people

Secondary tropical forests absorb carbon at higher rate than old-growth forests

Forest losses increase local temperatures

INTERNET SPACE
Third Sentinel satellite launched for Copernicus

Sentinel-3A poised for liftoff

New Satellite-Based Maps to Aid in Climate Forecasts

Consistency of Earth's magnetic field history surprises scientists

INTERNET SPACE
Stretchable nano-devices towards smart contact lenses

New ways to construct contactless magnetic gears

Scientists take nanoparticle snapshots

Scientists find a new way to make nanowire lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.