GPS News  
STELLAR CHEMISTRY
Unprecedentedly wide and sharp dark matter map
by Staff Writers
Tokyo, Japan (SPX) Mar 04, 2018

The dark matter is concentrated in dense clumps. We can identify massive dark matter halos (indicated by oranges circles). The area shown in this figure is approximately 30 square degrees (a total of 160 square degrees were observed this time). (Lower) An example of 3-D distribution of dark matter reconstructed via tomographic methods using the weak lensing technique combined with the redshift estimates of the background galaxies.

A research team of multiple institutes, including the National Astronomical Observatory of Japan and University of Tokyo, released an unprecedentedly wide and sharp dark matter map based on the newly obtained imaging data by Hyper Suprime-Cam on the Subaru Telescope. The dark matter distribution is estimated by the weak gravitational lensing technique.

The team located the positions and lensing signals of the dark matter halos and found indications that the number of halos could be inconsistent with what the simplest cosmological model suggests. This could be a new clue to understanding why the expansion of the Universe is accelerating.

In the 1930's, Edwin Hubble and his colleagues discovered the expansion of the Universe. This was a big surprise to most of the people who believed that the Universe stayed the same throughout eternity. A formula relating matter and the geometry of space-time was required in order to express the expansion of the Universe mathematically. Coincidentally, Einstein had already developed just such a formula. Modern cosmology is based on Einstein's theory for gravity.

It had been thought that the expansion is decelerating over time because the contents of the Universe (matter) attract each other. But in the late 1990's, it was found that the expansion has been accelerating since about 8 Giga years ago. This was another big surprise which earned the astronomers who found the expansion a Nobel Prize in 2011. To explain the acceleration, we have to consider something new in the Universe which repels the space.

The simplest resolution is to put the cosmological constant back into Einstein's equation. The cosmological constant was originally introduced by Einstein to realize a static universe, but was abandoned after the discovery of the expansion of the Universe. The standard cosmological model (called LCDM) incorporates the cosmological constant. LCDM is supported by many observations, but the question of what causes the acceleration still remains. This is one of the biggest problems in modern cosmology.

Wide and deep imaging survey using Hyper Suprime-Cam
The team is leading a large scale imaging survey using Hyper Suprime-Cam (HSC) to probe the mystery of the accelerating Universe. The key here is to examine the expansion history of the Universe very carefully.

In the early Universe, matter was distributed almost but not quite uniformly. There were slight fluctuations in the density which can now be observed through the temperature fluctuations of the cosmic microwave background. These slight matter fluctuations evolved over cosmic time because of the mutual gravitational attraction of matter, and eventually the large scale structure of the present day Universe become visible. It is known that the growth rate of the structure strongly depends on how the Universe expands.

For example, if the expansion rate is high, it is hard for matter to contract and the growth rate is suppressed. This means that the expansion history can be probed inversely through the observation of the growth rate.

It is important to note that growth rate cannot be probed well if we only observe visible matter (stars and galaxies). This is because we now know that nearly 80 % of the matter is an invisible substance called dark matter. The team adopted the 'weak gravitation lensing technique.' The images of distant galaxies are slightly distorted by the gravitational field generated by the foreground dark matter distribution. Analysis of the systematic distortion enables us to reconstruct the foreground dark matter distribution.

This technique is observationally very demanding because the distortion of each galaxy is generally very subtle. Precise shape measurements of faint and apparently small galaxies are required. This motivated the team to develop Hyper Suprime-Cam. They have been carrying out a wide field imaging survey using Hyper Suprime-Cam since March 2014. At this writing in February 2018, 60 % of the survey has been completed.

Unprecedentedly wide and sharp dark matter map
In this release, the team presents the dark matter map based on the imaging data taken by April 2016. This is only 11 % of the planned final map, but it is already unprecedentedly wide. There has never been such a sharp dark matter map covering such a wide area.

Imaging observations are made through five different color filters. By combining these color data, it is possible to make a crude estimate of the distances to the faint background galaxies (called photometric redshift). At the same time, the lensing efficiency becomes most prominent when the lens is located directly between the distant galaxy and the observer.

Using the photometric redshift information, galaxies are grouped into redshift bins. Using this grouped galaxy sample, dark matter distribution is reconstructed using tomographic methods and thus the 3D distribution can be obtained. Data for 30 square degrees are used to reconstruct the redshift range between 0.1 (~1.3 G light-years) and 1.0 (~8 G light-years).

At the redshift of 1.0, the angular span corresponds to 1.0 G x 0.25 G light-years. This 3D dark matter mass map is also quite new. This is the first time the increase in the number of dark matter halos over time can be seen observationally.

What the dark matter halo count suggests and future prospects
The team counted the number of dark matter halos whose lensing signal is above a certain threshold. This is one of the simplest measurements of the growth rate. It is suggested that the number count of the dark matter halos is less than what is expected from LCDM. This could indicate there is a flaw in LCDM and that we might have to consider an alternative rather than the simple cosmological constant (Note 1).

The statistical significance is, however, still limited as the large error bars suggest. There has been no conclusive evidence to reject LCDM, but many astronomers are interested in testing LCDM because discrepancies can be a useful probe to unlock the mystery of the accelerating Universe.

Further observation and analysis are needed to confirm the discrepancy with higher significance. There are some other probes of the growth rate and such analysis are also underway (e.g. angular correlation of galaxy shapes) in the team to check the validity of standard LCDM.

Note 1: Empty space is known to have energy caused by quantum effects and this is one candidate for the source of the cosmological constant. However, the energy density of the cosmological constant is many orders of magnitude weaker than what would be predicted based on this "vacuum energy" and it is hard to reconcile the discrepancy. Astronomers started to consider the existence of some other physical mechanism to explain the energy density, that concept is now called dark energy. The energy density can change over time in this generalization. If the dark energy was stronger in the past, the acceleration would have been more significant and suppressed the growth rate. This would result in fewer dark matter halos.

Research paper


Related Links
National Institutes of Natural Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Search for first stars uncovers 'dark matter'
Tel Aviv, Israel (SPX) Mar 01, 2018
A team of astronomers led by Prof. Judd Bowman of Arizona State University unexpectedly stumbled upon "dark matter," the most mysterious building block of outer space, while attempting to detect the earliest stars in the universe through radio wave signals, according to a study published this week in Nature. The idea that these signals implicate dark matter is based on a second Nature paper published this week, by Prof. Rennan Barkana of Tel Aviv University, which suggests that the signal is proof ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
EU food agency says three pesticides harm bees as ban calls grow

The secret to tripling the number of grains in sorghum and perhaps other staple crops

'Noah's Ark' seed vault chalks up a million crop varieties

New approach to improve nitrogen use, enhance yield, and promote flowering in rice

STELLAR CHEMISTRY
Unconventional superconductor may be used to create quantum computers of the future

Engineers develop flexible, water-repellent graphene circuits for washable electronics

New technology standard could shape the future of electronics design

Microchip Technology buys rival for $8.3 bn

STELLAR CHEMISTRY
Trump, Boeing finalize cheaper deal for new Air Force One

Lockheed awarded $155M on two contracts for F-35 work

Lockheed awarded $158M for support of U.S., foreign F-35 programs

Boeing receives $73.2M to service F/A-18 jets

STELLAR CHEMISTRY
German court paves way for diesel driving bans

Car-mad Germany anxious as court to rule on diesel bans

Rome to ban diesel cars from 2024: mayor

Germany cleared for greener public transit

STELLAR CHEMISTRY
US, China clash on tariffs on Chinese aluminum foil

Standard Chartered brings back dividends as profits jump

Germany 'watchful' of Chinese investment in Daimler

China factory expansion slows to 19-month low in February

STELLAR CHEMISTRY
Geological change confirmed as factor behind extensive diversity in tropical rainforests

Reforesting US topsoils store massive amounts of carbon, with potential for much more

Drier conditions could doom Rocky Mountain spruce and fir trees

Tropical trees use unique method to resist drought

STELLAR CHEMISTRY
US blasts off another satellite to boost weather forecasts

NASA joins international science team in exploring auroral cusp from Norway

How does GEOS-5-based planetary boundary layer height and humidity vary across China?

New partnership aids sustainable growth with earth observations

STELLAR CHEMISTRY
UT Dallas team's microscopic solution may save researchers big time

Researchers invent light-emitting nanoantennas

Nanomushroom sensors: One material, many applications

USTC realizes strong indirect coupling in distant nanomechanical resonators









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.