GPS News  
CHIP TECH
Unlocking the gates to quantum computing
by Staff Writers
Brisbane, Australia (SPX) Mar 29, 2016


An artist's rendering of the quantum Fredkin (controlled-SWAP) gate, powered by entanglement, operating on photonic qubits. Image courtesy Raj Patel and Geoff Pryde, Center for Quantum Dynamics, Griffith University. For a larger version of this image please go here.

Researchers from Griffith University and the University of Queensland have overcome one of the key challenges to quantum computing by simplifying a complex quantum logic operation. They demonstrated this by experimentally realising a challenging circuit - the quantum Fredkin gate - for the first time.

"The allure of quantum computers is the unparalleled processing power that they provide compared to current technology," said Dr Raj Patel from Griffith's Centre for Quantum Dynamics.

"Much like our everyday computer, the brains of a quantum computer consist of chains of logic gates, although quantum logic gates harness quantum phenomena."

The main stumbling block to actually creating a quantum computer has been in minimising the number of resources needed to efficiently implement processing circuits.

"Similar to building a huge wall out lots of small bricks, large quantum circuits require very many logic gates to function. However, if larger bricks are used the same wall could be built with far fewer bricks," said Dr Patel.

"We demonstrate in our experiment how one can build larger quantum circuits in a more direct way without using small logic gates."

At present, even small and medium scale quantum computer circuits cannot be produced because of the requirement to integrate so many of these gates into the circuits. One example is the Fredkin (controlled- SWAP) gate. This is a gate where two qubits are swapped depending on the value of the third.

Usually the Fredkin gate requires implementing a circuit of five logic operations. The research team used the quantum entanglement of photons - particles of light - to implement the controlled-SWAP operation directly.

"There are quantum computing algorithms, such as Shor's algorithm for factorising prime numbers, that require the controlled-SWAP operation.

The quantum Fredkin gate can also be used to perform a direct comparison of two sets of qubits (quantum bits) to determine whether they are the same or not. This is not only useful in computing but is an essential feature of some secure quantum communication protocols where the goal is to verify that two strings, or digital signatures, are the same," said Professor Tim Ralph from the University of Queensland.

Professor Geoff Pryde, from Griffith's Centre for Quantum Dynamics, is the project's chief investigator.

"What is exciting about our scheme is that it is not limited to just controlling whether qubits are swapped, but can be applied to a variety of different operations opening up ways to control larger circuits efficiently," said Professor Pryde.

"This could unleash applications that have so far been out of reach."

The research has been published as A quantum Fredkin gate in Science Advances (DOI:10.1126/sciadv.1501531)


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Griffith University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Researchers take giant step towards 'holy grail' of silicon photonics
Cardiff, UK (SPX) Mar 21, 2016
A group of researchers from the UK, including academics from Cardiff University, has demonstrated the first practical laser that has been grown directly on a silicon substrate. It is believed the breakthrough could lead to ultra-fast communication between computer chips and electronic systems and therefore transform a wide variety of sectors, from communications and healthcare to energy generati ... read more


CHIP TECH
Production of butter from shea trees in West Africa pushed back 1,000 years

Climate Change Shifting Wine Grape Harvests in France and Switzerland

China sales help Bordeaux wines turn around two-year slump

Cousteau warns of reef damage in Florida port project

CHIP TECH
Replacement for silicon devices looms big with ORNL discovery

Protected Majorana states for quantum information

DNA 'origami' could help build faster, cheaper computer chips

Magnetic chips could dramatically increase energy efficiency of computers

CHIP TECH
Mozambique debris 'almost certainly from MH370'

New material could make aircraft deicers a thing of the past

Flying wing-shaped airplane validating new wing design method

Mozambique debris 'almost certainly from MH370': Australia

CHIP TECH
Newest Tesla electric will aim at middle market

US judge gives VW to April 21 for emissions fix plan

US unveils emergency braking deal with automakers

Industry calls for fast lane for self-driving cars

CHIP TECH
Moscow aims to better economic ties to Finland

News 'micropayments' startup hits US market

Japan exports to China rise in February, boosted by post holiday demand

'Forced labour' for thousands of maids in Hong Kong: report

CHIP TECH
Drought alters recovery of Rocky Mountain forests after fire

Recycling pecan wood for commercial growing substrates

China's forest recovery shows hope for mitigating global climate change

No logging at protected Tasmanian forest: Australia

CHIP TECH
Russia Prepared to Offer Launch Options for Morocco's Satellite

Jason-3 Begins Mapping Oceans, Sees Ongoing El Nino

Satellites to help check unauthorised construction at monuments

Improving farm and water management with DMC constellation

CHIP TECH
Nanolight at the edge

Team explores nanoscale objects with microwave microscopy

Nano-enhanced textiles clean themselves with light

ASRC professor leads study on reconfigurable magnetic nanopatterns









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.