Subscribe free to our newsletters via your
. GPS News .




STELLAR CHEMISTRY
Universe's first stars left unique chemical signatures
by Brooks Hays
Livermore, Calif. (UPI) Jul 1, 2015


disclaimer: image is for illustration purposes only

Researchers at Lawrence Livermore National Laboratory are on the case of the missing alpha star signatures. Scientist Brian Bucher recently made a breakthrough in predicting what the universe's first generation of stars might look like -- chemically speaking.

The cosmos' original stars were different than today's stars. They didn't have the plethora of heavy elements common in the modern universe at their disposal. They had to make their own.

Thanks to their inventiveness, the elements that make life possible are now littered throughout the cosmos. But when the first stars were born, just 400 million years after the Big Bang, there was only hydrogen and helium. Fusion in the bellies of these original stars converted the two elements into an array of heavier ones -- oxygen, nitrogen, carbon, iron and others.

But to pinpoint the remnants of these ancient stars, researchers need a more precise understanding of what chemicals will be left over. What chemical patterns will give away their once-presence?

"It is vital to our understanding of the properties of the first stars and the formation of the first galaxies to verify the predicted composition of stellar ashes by comparing them to observational data," Bucher said in a press release.

The key to predicting chemical composition is modeling. But to build the proper models, scientists need to recreate chemical reactions in the lab. One of those elusive reactions is the fusion of two carbon nuclei into a magnesium nucleus and one neutron. It's a reaction that's been near impossible to capture.

But Bucher and his colleagues were finally able to do it -- observing the fusion at intense star-like energies using a lab accelerator.

"With this new measurement, we have significantly improved the precision of this rate for stellar modeling," Bucher said. "We've studied its impact on the resulting stellar abundance pattern predictions, helping to identify the signature of the universe's elusive first generation of stars and their supernovae."

The breakthrough was detailed in the journal Physical Review Letters.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Supernova remnant yields evidence of source of dusty galaxies
Charlottesville, Va. (UPI) Jan 6, 2013
Supernovas are thought to be a primary source of dust in galaxies, and U.S. astronomers say the remains of a recent supernova are full of freshly formed dust. Direct evidence of a supernova's dust-making capabilities has up to now been slim and cannot account for the copious amount of dust detected in young, distant galaxies, they said, but data from radio telescopes in Chile could expl ... read more


STELLAR CHEMISTRY
Rapid authentication of edible oils and screening of gutter oils

Firefighters forced to kill 20 million bees escaped from truck crash

The secret weapons of cabbages: Overcome by butterfly co-evolution

Genetic study of 'co-evolution' could provide clues to better food production

STELLAR CHEMISTRY
With 300 kilometers per second to new electronics

Biomanufacturing of CdS quantum dots

KAIST team develops the first flexible phase-change random access memory

Stanford engineers find a simple yet clever way to boost chip speeds

STELLAR CHEMISTRY
US military on defensive over F-35 fighter jet

Australia orders airborne refueling tankers

CAE producing P-8A simulator trainer hardware

E-2D aerial refueling capability passes CDR

STELLAR CHEMISTRY
A learning method for energy optimization of the plug-in hybrid electric bus

Physical study may give boost to hydrogen cars

Researchers build mini Jeep that turns tire friction into energy

Digital messages on vehicle windshields make driving less safe

STELLAR CHEMISTRY
France woos Chinese investors as PM wraps up fruitful trip

Framework for China-led international bank signed

China and France say tie-up in emerging economies 'win-win'

Australia lowers iron ore price forecast as China outlook softens

STELLAR CHEMISTRY
Can pollution help trees fight infection?

In Beirut, a green paradise off-limits to Lebanese

Some forestlands cool climate better without trees

Lax rules put Congo's forests, key carbon reserve, at risk

STELLAR CHEMISTRY
Sentinel-2A completes critical first days in space

Oregon experiments open window on landscape formation

Beijing Quadrupled in Size in a Decade

A New Era of Space Collaboration between Australia and US

STELLAR CHEMISTRY
Soft core, hard shell -- the latest in nanotechnology

Ultrafast heat conduction can manipulate nanoscale magnets

MIPT physicists develop ultrasensitive nanomechanical biosensor

A new way to image surfaces on the nanoscale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.