GPS News
TECH SPACE
Understanding laser accelerated electron radiation through terahertz emissions
The accelerating electrons radiate coherent THz emissions continuously along the laser propagation direction, resulting in broadband multi-mJ THz radiation in the far field.
Understanding laser accelerated electron radiation through terahertz emissions
by Staff Writers
Changchun, China (SPX) Feb 08, 2023

The terahertz (THz) gap, a frequency band lying between the microwave and infrared regions of the electromagnetic spectrum where conventional technologies are inefficient in generating and detecting the radiation, is being rapidly closed by development of new THz sources and detectors. Laser-based THz sources are of great interest due to their capability of producing coherent, single-cycle-to-multicycle, broadband (or narrowband) radiation.

Such sources can also provide natural synchronization with the driving laser, allowing ultrafast time-resolved spectroscopy and imaging. Recently, high-power femtosecond lasers have been used to produce strong THz radiation, as well as to explore novel THz-driven phenomena such as molecular alignment, harmonic generation, and electron acceleration.

In a new paper published in Light Science and Application, a team of scientists led by Professor Ki-Yong Kim from the University of Maryland, College Park, also affiliated with Gwangju Institute of Science and Technology and the Institute for Basic Science, Korea, have developed a new model for high-power terahertz emissions from laser pulses.

Among many laser-based sources, laser-plasma-based ones are well suited for high-power THz generation. Plasmas are already ionized and thus can sustain high electromagnetic fields, with little or no concern about material damage when high-power laser pulses are focused into a small volume for energy-scalable THz generation. Since the pioneering work by Hamster et al., coherent THz generation from laser-produced gaseous and solid-density plasmas has been extensively investigated.

In gases, single- or two-color laser-produced plasmas can generate coherent broadband THz radiation by ultrafast laser-driven currents. In two-color laser mixing, the laser-to-THz conversion efficiency increased up to the percent level by using mid-infrared laser drivers. High-energy THz radiation was also observed from laser-irradiated, high-density plasma targets based on liquids and solids. Recently, tens of mJ of THz energy was observed from a metal foil irradiated by high-energy (~60 J) picosecond laser pulses. Unlike gas targets, high-density ones, however, often pose target debris and target reloading issues, which makes them unfavorable for use in continuous or high-repetition-rate (>kHz) operation.

Laser-wakefield acceleration (LWFA), a gaseous plasma-based compact electron accelerator scheme, is another source of broadband electromagnetic radiation. A relativistic electron bunch produced in LWFA can emit THz radiation when it exits the plasma-vacuum boundary by coherent transition radiation (CTR). This occurs when the bunch length size becomes compared to or less than the wavelength of the emitted THz radiation, and the THz fields produced by individual electrons coherently add up in the radiation direction.

The research team observed multi-mJ THz emission from 100-TW-laser-driven LWFA with an energy conversion efficiency of 0.15%. The emitted THz radiation is radially polarized and broadband, possibly extending beyond 10 THz. The correlation between the electron beam properties (energy and charge) and THz output energy shows that high-energy (>150 MeV) electrons do not necessarily yield high-power terahertz radiation. Instead, low-energy but high-charge electrons can produce much stronger terahertz radiation.

To explain this interesting result together with multi-mJ THz generation, the research team have proposed a coherent radiation model, in which the electrons accelerated by the laser ponderomotive force and subsequent plasma wakefields radiates broadband emission continuously along the laser propagation direction, ultimately resulting in phase-matched conical THz radiation in the far field. This model, however, needs to be verified or examined by more follow-up experiments and analytic/numerical studies in order to have a full understanding of THz generation in LWFA, as well as to optimize the source for future high-power THz applications.

Research Report:Multi-millijoule terahertz emission from laser-wakefield-accelerated electrons

Related Links
Changchun Institute of Optics
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Ghostly mirrors for high-power lasers
Glasgow, Scotland (SPX) Feb 01, 2023
The 'mirrors' exist for only a fragment of time but could help to reduce the size of ultra-high power lasers, which currently occupy buildings the size of aircraft hangars, to university basement sizes. They have potential to be developed into a variety of plasma-based, high damage-threshold optical elements that could lead to small footprint, ultra-high-power, ultra-short pulse laser systems. The new way of producing mirrors, and other optical components, points the way to developing the ne ... read more

TECH SPACE
Researchers use water treatment method to capture acids from agricultural waste

Carbon emissions from fertilizers could be reduced by as much as 80% by 2050

Foot-and-mouth variant hits Iraq buffaloes, threatening livelihoods

North Korea ruling party to hold key meeting on agriculture

TECH SPACE
Spinning up a 'flip-flop' qubit

Atom-thin walls could smash size, memory barriers in next-gen devices

Developing practical quantum computers that can solve big challenges of our time

Researchers pioneer process to stack micro-LEDs

TECH SPACE
NASA's X-57 Maxwell is Major Step Closer to Flight Readiness

International consortium to bring zero-emission aviation to New Zealand

Japan analysing previous aerial objects after China balloon

China confirms it refused US call over 'irresponsible' balloon shootdown

TECH SPACE
Trimble technology to help power Nissan's latest Driver Assist

Helping transit agencies visualize the transition to electric bus fleets

Compact, non-mechanical 3D lidar system could make autonomous driving safer

Volvo Cars profits rise despite 2022 'turbulence'

TECH SPACE
Asian markets follow Wall St down; Singapore maintains GDP forecasts

Toshiba revises down forecasts as it weighs buyout

Asian markets mixed in nervous trade ahead of US inflation data

Biden, Lula to unite on environment at W.House but split on Ukraine

TECH SPACE
Uprooted: Amazonian Siekopai people battle for return to ancestral land

General forest management critical for ecosystem services even with climate change

Global wetland loss lower than previous estimates: study

Brazil deploys police as miners flee Yanomami territory

TECH SPACE
Faster, more accurate 3D modelling recreates a landscape's digital twin down to the pixel

Esri joins the Overture Maps Foundation to help build interoperable open map data

UConn study clears up cloudy data for improved satellite imagery

Global land rush

TECH SPACE
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.