GPS News  
CARBON WORLDS
Underground storage of carbon captured directly from air
by Staff Writers
Fukuoka, Japan (SPX) Jun 04, 2021

Schematic image of low-purity CO2 storage with the membrane-based Direct Air Capture (DAC).

The global threat of ongoing climate change has one principal cause: carbon that was buried underground in the form of fossil fuels is being removed and released into the atmosphere in the form of carbon dioxide (CO2). One promising approach to addressing this problem is carbon capture and storage: using technology to take CO2 out of the atmosphere to return it underground.

In a new study published in Greenhouse Gases Science and Technology, researchers from Kyushu University and the National Institute of Advanced Industrial Science and Technology, Japan, investigated geological storage of low-purity CO2 mixed with nitrogen (N2) and oxygen (O2), produced by direct air capture (DAC) using membrane-based technology.

Many current carbon capture projects are carried out at localized sources using concentrated CO2 emissions, such as coal-fired power plants, and require intensive purification storage owing to the presence of hazardous compounds such as nitrogen oxide and sulfur oxide. They also have high transportation costs because viable geological storage sites are typically far from the sources of CO2.

In contrast, direct air capture of CO2 can be performed anywhere, including at the storage site, and does not require intensive purification because the impurities, O2 and N2, are not hazardous. Therefore, low-purity CO2 can be captured and injected directly into geological formations, at least in theory. Understanding how the resulting mixture of CO2, O2, and N2 behaves when it is injected and stored in geological formations is necessary before underground storage of low-purity CO2 from direct air capture can be widely adopted.

As the study's lead author, Professor Takeshi Tsuji, explains, "It is difficult to capture high-purity CO2 using DAC. We performed molecular dynamic simulations as a preliminary evaluation of the storage efficiency of CO2-N2-O2 mixtures at three different temperature and pressure conditions, corresponding to depths of 1,000 m, 1,500 m, and 2,500 m at the Tomakomai CO2 storage site in Japan."

Although further research is still needed, such as investigations of the chemical reactions of injected O2 and N2 at great depths, the results of these simulations suggest that geological storage of CO2-N2-O2 mixtures produced by direct air capture is both environmentally safe and economically viable.

According to Professor Tsuji, "Because of the ubiquity of ambient air, direct air capture has the potential to become a ubiquitous means of carbon capture and storage that can be implemented in many remote areas, such as deserts and offshore platforms. This is important both for reducing transportation costs and ensuring social acceptance."

Research Report: "Geological storage of CO2-N2-O2 mixtures produced by membrane-based direct air capture (DAC)"


Related Links
Kyushu University, I2CNER
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
A new form of carbon
Espoo, Finland (SPX) Jun 06, 2021
Carbon exists in various forms. In addition to diamond and graphite, there are recently discovered forms with astonishing properties. For example graphene, with a thickness of just one atomic layer, is the thinnest known material, and its unusual properties make it an extremely exciting candidate for applications like future electronics and high-tech engineering. In graphene, each carbon atom is linked to three neighbours, forming hexagons arranged in a honeycomb network. Theoretical studies have ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Elephants on tour in China guzzle crops and wreak havoc

French 'bug farm' thrives on demand for pesticide-free fruit

West African fish meal exports undermine food security: Greenpeace

Last resort: the seeds kept safe in a South Korean mountain

CARBON WORLDS
Taiwan tech sector hit by coronavirus outbreak

Complex shapes of photons to boost future quantum technologies

Merkel urges 'catch up' as Germany opens semiconductor factory

Atom swapping could lead to ultra-bright, flexible next generation LEDs

CARBON WORLDS
Northrop Grumman helps to enable decision superiority

Australia readies for multinational Exercise Talisman Sabre

Reduction in air transport emissions requires intensified efforts

AFRL opens research altitude chambers, becomes force in aerospace physiology

CARBON WORLDS
Former boss to pay Volkswagen record sum over Dieselgate

Tesla scraps plan for ultra-luxe Plaid+ model

Dangerously trending: driverless Tesla videos on social media

Uber's British union deal gets mixed reception

CARBON WORLDS
Parking lots: Car space sells for $1.3m in Hong Kong

China mulls new law to fight foreign sanctions

Chinese exports up 28%, imports hit decade-high

China rebukes Biden for 'suppressing' Chinese firms with list

CARBON WORLDS
Brazil leader promises Yanomami no unwanted mining on their lands

Brazil environment minister probed for timber trafficking

Ethiopia's Abiy kicks off massive tree-planting drive

Brazil deforestation 94% illegal: report

CARBON WORLDS
Satellites show how Earth's water cycle is ramping up as climate warms

NASA rocket mission studying escaping radio waves

Lynred's NGP infrared detector to fly on Copernicus CO2M satellite mission

NASA Earth System Observatory to help address, mitigate climate change

CARBON WORLDS
Nano-Bio Materials Consortium introduces new AFRL-Industry Co-Development Program

Nanostructured device stops light in its tracks

Scientists use DNA technology to build tough 3D nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.