GPS News  
TIME AND SPACE
Ultracold quantum particles break classical symmetry
by Staff Writers
Heidelberg, Germany (SPX) Aug 12, 2019

illustration only

Many phenomena of the natural world evidence symmetries in their dynamic evolution which help researchers to better understand a system's inner mechanism. In quantum physics, however, these symmetries are not always achieved. In laboratory experiments with ultracold lithium atoms, researchers from the Center for Quantum Dynamics at Heidelberg University have proven for the first time the theoretically predicted deviation from classical symmetry. Their results were published in the journal "Science".

"In the world of classical physics, the energy of an ideal gas rises proportionally with the pressure applied. This is a direct consequence of scale symmetry, and the same relation is true in every scale invariant system. In the world of quantum mechanics, however, the interactions between the quantum particles can become so strong that this classical scale symmetry no longer applies", explains Associate Professor Dr Tilman Enss from the Institute for Theoretical Physics. His research group collaborated with Professor Dr Selim Jochim's group at the Institute for Physics.

In their experiments, the researchers studied the behaviour of an ultracold, superfluid gas of lithium atoms. When the gas is moved out of its equilibrium state, it starts to repeatedly expand and contract in a "breathing" motion. Unlike classical particles, these quantum particles can bind into pairs and, as a result, the superfluid becomes stiffer the more it is compressed.

The group headed by primary authors Dr Puneet Murthy and Dr Nicolo Defenu - colleagues of Prof. Jochim and Dr Enss - observed this deviation from classical scale symmetry and thereby directly verified the quantum nature of this system.

The researchers report that this effect gives a better insight into the behaviour of systems with similar properties such as graphene or superconductors, which have no electrical resistance when they are cooled below a certain critical temperature.

Research paper


Related Links
University of Heidelberg
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Scientists reproduce the dynamics behind astrophysical shocks
Plainsboro NJ (SPX) Jul 30, 2019
High-energy shock waves driven by solar flares and coronal mass ejections of plasma from the sun erupt throughout the solar system, unleashing magnetic space storms that can damage satellites, disrupt cell phone service and blackout power grids on Earth. Also driving high-energy waves is the solar wind - plasma that constantly flows from the sun and buffets the Earth's protective magnetic field. Now experiments led by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics La ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Humanity's next test: feed 10 billion without ruining Earth

Solar panels cast shade on agriculture in a good way

China firms stop purchases of US farm produce: state media

Buzz kill: mass bee deaths sting Russian beekeepers

TIME AND SPACE
Quantum light sources pave the way for optical circuits

Researchers produce electricity by flowing water over extremely thin layers of metal

Extraordinarily thick organic light-emitting diodes solve nagging issues

Scientists send light through 2D crystal layer in quantum computing leap

TIME AND SPACE
Cathay Pacific reports profit but warns of HK protests impact

Boeing nets $55.5M for work on KC-46 tanker's boom redesign

Raytheon delivers prototype mid-band jammer for use on EA-18G fighter

Pentagon: Cost of F-35 fighter plane program up by $25B

TIME AND SPACE
Lyft gets boost from improving outlook

Lyft suspends e-bikes after battery fires

Five things to know about VW's 'dieselgate' scandal

Rat brain offers insights to engineers designing self-navigating cars, robots

TIME AND SPACE
US 'heartland' companies balk at latest Trump tariffs

Policymakers scramble as Trump's trade war widens

China's exports unexpectedly rise in July

U.S. Steel job cuts highlight EU sector woes

TIME AND SPACE
Bolsonaro vows to fight 'illegal deforestation' in Brazil

Brazil research chief says sacked over Bolsonaro deforestation spat

Indonesian leader threatens sackings over rampant forest fires

OU-led study shows improved estimates of Brazilian Amazon gains and losses

TIME AND SPACE
NASA targets coastal ecosystems with new space sensor

CryoSat conquers ice on Arctic lakes

Roscosmos postpones launch of second Arctic weather satellite

Airbus selects exactEarth as AIS Partner for new maritime applications platform

TIME AND SPACE
DNA origami joins forces with molecular motors to build nanoscale machines

DARPA Announces Microsystems Exploration Program









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.