GPS News  
BIO FUEL
UNIST researchers turn waste gas into road-ready diesel fuel
by Staff Writers
Ulsan, South Korea (SPX) Nov 21, 2016


The sample on the left is the new delafossite-based catalyst used in the reaction between CO2 and H2 generated by solar water splitting. Shown on the right is diesel, produced by the reaction. Image courtesy UNIST. For a larger version of this image please go here.

Climate change is one of the most serious threats facing the world today. With the effectuation of the Paris Agreement, there has been a rising interest on carbon capture and utilization (CCU).

A new study, led by Professor Jae Sung Lee of Energy and Chemical Engineering at UNIST uncovers new ways to make biofuel from carbon dioxide (CO2), the most troublesome greenhouse gas. In their paper published in the journal Applied Catalysis B: Environmental, the team presented direct CO2 conversion to liquid transportation fuels by reacting with renewable hydrogen (H2) generated by solar water splitting.

The currently existing catalysts, used for the reactions of H2 with CO2 are limited mostly to low molecular weight substances, such as methane or methanol. Besides, due to the low value of these catalysts, the reduction effects of CO2 is generally low. However, the new delafossite-based catalyst, presented by UNIST research team converts CO2 into liquid hydrocarbon-based fuels (e.g., diesel fuel) in one single step. These fuel samples can be, then, used by existing diesel vehicles, like trucks and buses.

This new delafossite-based catalyst, composed of inexpensive, earth-abundant copper and steel is used in a reaction between CO2 emissions of industrial plants and H2 generated from solar hydrogen plant to produce diesel.

"Diesel fuels have longer chain of carbon and hydrogen atoms, compared to mathanol and methane," says Yo Han Choi, the first author of the research. "Using delafossite-CuFeO2 as the catalyst precursor, we can create longer carbon chains and this would allow for the production of diesel."

This direct CO2-FT synthesis is different from the German car maker Audi's CO2-to-dielsel conversion process, which actually involves two steps - reverse water gas shift (RWGS) reaction to CO followed by CO Fisher-Tropsch (FT) synthesis.

The benefits are two-fold: The process removes harmful CO2 from the atmosphere, and the diesel can be used as an alternative fuel to gasoline. The research team expects that this breakthrough holds a potential to revolutionize the automobile industry, thereby bringing us a step closer to eliminating greenhouse gas.

"We believe the new catalyst breaks through the limitation of CO2-based FT synthesis and will open the avenue for new opportunity for recycling CO2 into valuable fuels and chemicals," says Professor Lee.

This study has been supported by both the Climate Change-Response Tech Development Project and Mid-Career Researcher Program by Ministry of Science, ICT and Future Planning (MSIP), South Korea. Yo Han Choi, Youn Jeong Jang, Hunmin Park, Won Young Kim, Young Hye Lee, Sun Hee Choi, and Jae Sung Lee, "Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels", Applied Catalysis B: Environmental, (2016).


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ulsan National Institute of Science and Technology
Bio Fuel Technology and Application News






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
NextCoal to produce bio-coal for export to Japan, bio-oil for domestic use
New York NY (SPX) Nov 21, 2016
NextCoal International reports it is advancing plans to build a job-creating Rural Economic Development Renewable Fuels Center ("REDRFC") in northern New York State with the involvement of Japanese investors. The project aims to manufacture bio-coal for export to Japanese power plants and bio-oil for domestic industrial applications. Bio-coal is a drop-in fossil coal substitute for co-firi ... read more


BIO FUEL
Another species of Varroa mite threatens European honeybees

Mississippi River could leave farmland stranded

Crop yield gets big boost with modified genes in photosynthesis

Bacteria discovery offers possible new means of controlling crop pest

BIO FUEL
Breakthrough in the quantum transfer of information between matter and light

The thinnest photodetector in the world

Stable quantum bits can be made from complex molecules

Researchers discover new method to dissipate heat in electronic devices

BIO FUEL
State Dept approves dual Gulf deals for F18 and F15 jets

South Korea to buy Large Aircraft Infrared Countermeasures from U.S.

Chilean defense ministry signs agreement with Airbus

U.S. Air Force develops solution for F-22 weapon issue

BIO FUEL
A novel catalyst design opens possibility to hydrogen vehicle

Five things to know about VW's 'dieselgate' scandal

How much attention do drivers need to pay

VW reaches 3.0-liter diesel agreement with EPA: report

BIO FUEL
China doubles down on free trade as Trump leaves a void

Asia-Pacific leaders talk trade in a Trump world

JP Morgan Chase to pay $264 mn to settle China bribe scandal

Finland pining for post-Nokia economic champion

BIO FUEL
Global boreal forests differ but not immune to climate change

Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

BIO FUEL
How lightning strikes can improve storm forecasts

Farewell to Sentinel-2B

NASA finds unusual origins of high-energy electrons

Spaceflight Industries Reveals First Images from BlackSky Pathfinder-1

BIO FUEL
Researchers use acoustic waves to move fluids at the nanoscale

Researchers use graphene templates to make new metal-oxide nanostructures

Nano-scale electronics score laboratory victory

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.