GPS News  
OIL AND GAS
UH researchers discover a new method to boost oil recovery
by Staff Writers
Houston TX (SPX) Jul 01, 2016


Researchers from the University of Houston have reported the discovery of a nanotechnology-based solution that can achieve 15 percent tertiary oil recovery at low cost, without the large volume of chemicals used in most commercial fluids. Image courtesy University of Houston. Watch a video on the research here.

As oil producers struggle to adapt to lower prices, getting as much oil as possible out of every well has become even more important, despite concerns from nearby residents that some chemicals used to boost production may pollute underground water resources.

Researchers from the University of Houston have reported the discovery of a nanotechnology-based solution that could address both issues - achieving 15 percent tertiary oil recovery at low cost, without the large volume of chemicals used in most commercial fluids.

The solution - graphene-based Janus amphiphilic nanosheets - is effective at a concentration of just 0.01 percent, meeting or exceeding the performance of both conventional and other nanotechnology-based fluids, said Zhifeng Ren, MD Anderson Chair professor of physics. Janus nanoparticles have at least two physical properties, allowing different chemical reactions on the same particle.

The low concentration and the high efficiency in boosting tertiary oil recovery make the nanofluid both more environmentally friendly and less expensive than options now on the market, said Ren, who also is a principal investigator at the Texas Center for Superconductivity at UH. He is lead author on a paper describing the work, published June 27 in the Proceedings of the National Academy of Sciences.

"Our results provide a novel nanofluid flooding method for tertiary oil recovery that is comparable to the sophisticated chemical methods," they wrote. "We anticipate that this work will bring simple nanofluid flooding at low concentration to the stage of oilfield practice, which could result in oil being recovered in a more environmentally friendly and cost-effective manner."

In addition to Ren, researchers involved with the project include Ching-Wu "Paul" Chu, chief scientist at the Texas Center for Superconductivity at UH; graduate students Dan Luo and Yuan Liu; researchers Feng Wang and Feng Cao; Richard C. Willson, professor of chemical and biomolecular engineering; and Jingyi Zhu, Xiaogang Li and Zhaozhong Yang, all of Southwest Petroleum University in Chengdu, China.

The U.S. Department of Energy estimates as much as 75 percent of recoverable reserves may be left after producers capture hydrocarbons that naturally rise to the surface or are pumped out mechanically, followed by a secondary recovery process using water or gas injection.

Traditional "tertiary" recovery involves injecting a chemical mix into the well and can recover between 10 percent and 20 percent, according to the authors.

But the large volume of chemicals used in tertiary oil recovery has raised concerns about potential environmental damage.

"Obviously simple nanofluid flooding (containing only nanoparticles) at low concentration (0.01 wt% or less) shows the greatest potential from the environmental and economic perspective," the researchers wrote.

Previously developed simple nanofluids recover less than 5 percent of the oil when used at a 0.01 percent concentration, they reported. That leaves oil producers forced to choose between a higher nanoparticle concentration - adding to the cost - or mixing with polymers or surfactants.

In contrast, they describe recovering 15.2 percent of the oil using their new and simple nanofluid at that concentration - comparable to chemical methods and about three times more efficient than other nanofluids.

Dan Luo, a UH graduate student and first author on the paper, said when the graphene-based fluid meets with the brine/oil mixture in the reservoir, the nanosheets in the fluid spontaneously go to the interface, reducing interfacial tension and helping the oil flow toward the production well.

Ren said the solution works in a completely new way.

"When it is injected, the solution helps detach the oil from the rock surface," he said. Under certain hydrodynamic conditions, the graphene-based fluid forms a strong elastic and recoverable film at the oil and water interface, instead of forming an emulsion, he said.

Researchers said the difference is due to the asymmetric property of the 2-dimensional material. Nanoparticles are usually either hydrophobic - water-repelling, like oil - or hydrophilic, water-like, said Feng Wang, a post-doctoral researcher who shared first author-duties with Luo.

"Ours is both," he said. "Ours is Janus and also strictly amphiphilic."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Houston
All About Oil and Gas News at OilGasDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
OIL AND GAS
U.S. retail gas prices holding steady to lower, AAA finds
Washington (UPI) Jun 28, 2016
Higher refinery output in the United States and troubling economic news overseas could put downward pressure on retail gas prices, market analysis finds. Motor club AAA reports a national average retail price for a gallon of regular unleaded at $2.30, a slight decrease from the previous day and about 1 percent less than one month ago. Year-on-year, the price at the pump is 17 percent le ... read more


OIL AND GAS
Four newly identified genes could improve rice

Could ancient wheat be the future of food?

Herbicides used widely on federal, tribal wildlands, study says

'Amazing protein diversity' is discovered in the maize plant

OIL AND GAS
Oracle told to pay HP billions in chip dispute

Chip makes parallel programs run faster with less code

Scientists engineer tunable DNA for electronics applications

World's first 1,000-processor chip

OIL AND GAS
Made in China plane makes first commercial flight

China firm's $1.5 bn offer for Swiss caterer misses first mark

Brazilian air force tests KC-390 transport

Taiwan cabin crew end strike after China Airlines concessions

OIL AND GAS
Volkswagen out to fix big diesels in emissions scandal

Tesla fatal crash is setback to autonomous cars

VW still long way from drawing line under engine-rigging scandal

Record VW payout in US 'dieselgate' settlement

OIL AND GAS
West China Cement shares plunge following deal collapse

China cement deal collapses amid oversupply woes

Scotland's tartan and whisky makers hold breath after Brexit

Airbnb sues over registration of San Francisco homes

OIL AND GAS
NASA Maps California Drought Effects on Sierra Trees

Where do rubber trees get their rubber

Significant humus loss in forests of the Bavarian Alps

Botanical diversity unraveled in a previously understudied forest in Angola

OIL AND GAS
Sentinel-1 satellites combine radar vision

Canada Launches Maritime Monitoring Satellite

Nepal, India agree to use satellite system for border pillars

DigitalGlobe Awarded Sole-Source Contract to Provide Advanced Analytic Services to the DIA

OIL AND GAS
DNA shaping up to be ideal framework for rationally designed nanostructures

New 'ukidama' nanoparticle structure revealed

Shaping atomically thin materials in suspended structures

Nanoparticles and bioremediation can decontaminate polluted soils









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.