. GPS News .




.
EXO WORLDS
UH Astronomer Finds Planet in the Process of Forming
by Staff Writers
Honolulu HI (SPX) Oct 24, 2011

Artist's conception of the area near the planet LkCa 15 b. Click on picture for larger view. Credit: Karen L. Teramura, UH IfA.

The first direct image of a planet in the process of forming around its star has been captured by University of Hawaii astronomer Adam Kraus.

What astronomers are calling LkCa 15 b, looks like a hot "protoplanet" surrounded by a swath of cooler dust and gas, which is falling into the still-forming planet. Images have revealed that the forming planet sits inside a wide gap between the young parent star and an outer disk of dust.

Kraus (UH Institute for Astronomy) and colleague Michael Ireland (Macquarie University and the Australian Astronomical Observatory) combined the power of the 10-meter Keck telescopes with a bit of optical sleight of hand.

"LkCa 15 b is the youngest planet ever found, about 5 times younger than the previous record holder," said Kraus.

"This young gas giant is being built out of the dust and gas. In the past, you couldn't measure this kind of phenomenon because it's happening so close to the star. But, for the first time, we've been able to directly measure the planet itself as well as the dusty matter around it."

Kraus will be presenting the discovery at an Oct. 19 meeting at NASA's Goddard Space Flight Center. The meeting follows the acceptance of a research paper on the discovery by Kraus and Ireland by The Astrophysical Journal.

The optical sleight of hand used by the astronomers is to combine the power of Keck's Adaptive Optics with a technique called aperture mask interferometry. The former is the use of a deformable mirror to rapidly correct for atmospheric distortions of starlight.

The latter involves placing a small mask with several holes in the path of the light collected and concentrated by a giant telescope. With that, the scientists can manipulate the light waves.

"It's like we have an array of small mirrors," said Kraus. "We can manipulate the light and cancel out distortions." The technique allows the astronomers to cancel out the bright light of stars. They can then resolve disks of dust around stars and see gaps in the dusty layers where protoplanets may be hiding.

"Interferometry has actually been around since the 1800s, but through the use of adaptive optics has only been able to reach nearby young suns for about the last 7 years." said Dr. Ireland. "Since then we've been trying to push the technique to its limits using the biggest telescopes in the world, especially Keck."

The discovery of LkCa 15 b began as a survey of 150 young dusty stars in star-forming regions. That led to the more concentrated study of a dozen stars.

"LkCa 15 was only our second target, and we immediately knew we were seeing something new," said Kraus. "We could see a faint point source near the star, so thinking it might be a Jupiter-like planet we went back a year later to get more data."

In further investigations at varying wavelengths, the astronomers were intrigued to discover that the phenomenon was more complex than a single companion object.

"We realized we had uncovered a super Jupiter-sized gas planet, but that we could also measure the dust and gas surrounding it. We'd found a planet at its very beginning" said Kraus.

Drs. Kraus and Ireland plan to continue their observations of LkCa 15 and other nearby young stars in their efforts to construct a clearer picture of how planets and solar systems form.

The paper is available here.

Related Links
UH Institute for Astronomy
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EXO WORLDS
Nearby planet-forming disk holds water for thousands of oceans
Ann Arbor, MI (SPX) Oct 24, 2011
For the first time, astronomers have detected around a burgeoning solar system a sprawling cloud of water vapor that's cold enough to form comets, which could eventually deliver oceans to dry planets. Water is an essential ingredient for life. Scientists have found thousands of Earth-oceans' worth of it within the planet-forming disk surrounding the star TW Hydrae. TW Hydrae is 176 light y ... read more


EXO WORLDS
Putting light-harvesters on the spot

Breakthrough in the production of flood-tolerant crops

How plants sense low oxygen levels to survive flooding

Stem Rust-resistant Wheat Landraces Identified

EXO WORLDS
NIST measures key property of potential spintronic material

Superlattice Cameras Add More 'Color' to Night Vision

A new scheme for photonic quantum computing

Point defects in super-chilled diamonds may offer stable candidates for quantum computing bits

EXO WORLDS
US House targets EU airlines emissions rule

Boeing Dreamliner to make first commercial flight

EU rebukes US Congress over airline emissions rules

China's aviation sector sees slower growth: report

EXO WORLDS
Chinese firms say Saab bail-out deal still valid

Electromobility: New Components Going for a Test Run

Nissan eyes 1.5 million electric cars by 2016

Saab owner breaks off Chinese funding deal: company

EXO WORLDS
Greece, China to sign new trade memorandum: ministry

IBM appoints first female chief executive

WTO to rule on China-US dispute on shrimps, sawblades

Seven dead in Papua miners' strike

EXO WORLDS
Iceland to help France save trees from global warming

Bolivia reaches agreement with Amazon protesters

Bolivia natives, president in talks stand-off

Bolivia cancels controversial Amazon highway

EXO WORLDS
Lockheed Martin Begins GeoEye-2 Satellite Integration

Better use of Global Geospatial Information for Solving Development Challenges

NASA postpones climate satellite launch to Oct 28

NASA Readies New Type of Earth-Observing Satellite for Launch

EXO WORLDS
New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure

Molecular Depth Profiling Modeled Using Buckyballs and Low-Energy Argon


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement