GPS News  
UF Launches Project To Bridge The Regeneration Gap

Scientists are exploring the regenerative powers of salamanders to find help in treating brain diseases sunch as Alzheimer's and Parkinson's.
by John Pastor
Miami FL (SPX) Apr 02, 2007
Researchers at the McKnight Brain Institute of the University of Florida have initiated a project to treat human brain and other diseases by plundering the secrets of regeneration from creatures with remarkable powers of self-renewal, such as salamanders, newts, starfish and flatworms.

Fueled by about $6 million in private donations, university support and state matching funds, "The Regeneration Project" will connect scientists who work with adult human stem cells - the building blocks of self-renewal that exist within our brain, bone marrow and blood - with scientists who study how tissues and limbs develop in a variety of organisms.

"A salamander can be injured to the point that it loses its limbs or part of its spinal column, yet a few weeks later you'll see it scurrying across your lanai," said project leader Dennis A. Steindler, Ph.D., executive director of UF's Evelyn F. and William L. McKnight Brain Institute.

"The Regeneration Project will focus on unlocking the mysteries in living, simple organisms that sustain successful tissue and organ regeneration following injury and disease, and then applying this knowledge toward encouraging repair in the more complex human, where regeneration is not so simple."

Steindler said the project will involve researchers from far-ranging disciplines, including scientists who study how vertebrate development began millions of years ago as well as scientists who are trying to treat blindness by influencing the activity of stem cells in the human eye.

In terms of brain diseases, scientists may look at ways to mobilize and reinforce the body's own supply of adult stem cells to protect against or fight Alzheimer's and Parkinson's diseases, cancer, multiple sclerosis and traumatic injury.

The project has received support from two private gifts - from Jon and Beverly Thompson of Sanibel, Fla., and from the Thomas H. Maren Foundation, based in Gainesville - and from the UF Office of Research. Initial funding will help provide fellowships for young scientists who will bridge the gaps between the different labs and investigators involved in regeneration research.

"The fellows will be the glue that holds this broad group of scientists together," said Steindler, a professor of neuroscience at the UF College of Medicine. "We will begin a process of sharing ideas and designing experiments to answer questions about growth in simple systems that can then be applied to more complex tissue reconstruction needed in human organisms."

Although human organ systems such as the liver are quite capable of regeneration, the brain has only a small quantity of adult stems cells to fight disease or injuries. Similarly, the body has limited capacity to repair injured limbs or spinal cords. Regeneration researchers seek to strengthen the body's inherent healing powers.

"We are bringing together the best of the developmental biology world with the best of the stem cell world and starting the conversation, with the focus on how to get regeneration to work in a mammal," said Edward Scott, Ph.D., a professor of molecular genetics and director of the Program in Stem Cell Biology at the College of Medicine.

"Essentially, our body can heal itself, and that's why many of us live to be 80. But we can't do things like grow an arm or finger as we did in the early stages of our development. We want to learn how to turn those systems back on in people."

Recently, studies have shown humans possess some of the same genes and communication pathways used by some of nature's most remarkably regenerative animals.

Already, UF McKnight Brain Institute scientists have discovered more than 100 genes associated with all major human neurological diseases in a simple marine snail, as well as more than 600 genes that control development.

In the realm of adult human stem cells, Brain Institute researchers have shown ordinary human brain cells can generate new brain tissue in mice and produce large amounts of new brain cells in culture for use as possible replacements for dead or injured cells.

The UF project is "bold" because it takes a comprehensive view of regenerative medicine, according to Arlene Y. Chiu, Ph.D., director for scientific activities at the California Institute for Regenerative Medicine.

"We are all excited by the great potential of stem cells to repair damage and return function," Chiu said. "It remains a great mystery, however, why some organisms are able to renew tissues, organs and even restore whole limbs while other related animals are not. Even within a single organism, we find that some tissues have a far more robust ability to replenish and replace cells than others. Yet we do not understand the bases for these differences."

The gift from the Maren Foundation, named for the late UF researcher Thomas H. Maren, will provide immediate funding. Maren spent most of his career at UF's College of Medicine and his research led to the development of Trusopt, an important drug for the treatment of glaucoma.

The Thompson's gift creates the Jon L. and Beverly A. Thompson Research Endowment, which will provide ongoing income to support The Regeneration Project and other research at UF's McKnight Brain Institute. Jon Thompson is a retired executive with ExxonMobil. He earned a bachelor's and a master's degree in geology from UF. Beverly Thompson earned a master's degree in education from UF.

"In our view the collaboration of outstanding researchers under the leadership of Dennis Steindler shows great promise," said Jon Thompson. "We envision the day when adult stem cells will be routinely used against many diseases."

The Regeneration Project will shortly begin establishing its think tank of international scientists, Steindler said.

Related Links
Health at UFL
Hospital and Medical News at InternDaily.com
Hospital and Medical News at InternDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Light-Based Probe Sees Early Cancers In First Tests On Human Tissue
Durham NC (SPX) Mar 27, 2007
In its first laboratory tests on human tissue, a light-based probe built by researchers at Duke University's Pratt School of Engineering almost instantly detected the earliest signs of cancer in cells that line internal organs.







  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming
  • Raytheon Team Proposes Single International Standard In ADS-B Pursuit
  • NASA Signs Defense Department Agreement

  • Technique Creates Metal Memory And Could Lead To Vanishing Dents
  • Toyota Anticipates Sharp Increase In Its Hybrid Sales
  • New Nanoscale Engineering Breakthrough Points To Hydrogen-Powered Vehicles
  • Geneva Show Hints At Green Fuel Jumble For Motorists

  • Raytheon to Pursue US Air Force Network and Space Operations And Maintenance Contract
  • Boeing Helps US Air Force FAB-T Program Win Key Acquisition Award
  • Raytheon Completes Testing Of Navy Multiband Terminal Satellite Communications System
  • Northrop Grumman Adds Boeing To Its Integrated Air And Missile Defense Battle Command System Team

  • EU Foreign Ministers Await NATO-Russia Talks On Missile Shield
  • Russia Denies Readiness To Host Missile Shield
  • Japan Deploys Own Ballistic Missile Defences
  • US Offers To Boost Missile Cooperation with Russia

  • Wine Industry Faces Major Challenge From Global Warming
  • Debating The Impact Of GM Crops 10 Years On
  • EU Must Cut Tuna Fishing By Half To Save Bluefin
  • Too Much Water And Fertilizer Bad For Plant Diversity

  • Life Or Death A Matter Of Luck In Japanese Quake
  • Japanese Earthquake Victims Spend Restless Night
  • Cyclone Kills 36 Displaces 50000 In Madagascar
  • Birth And Rebirth In New Orleans

  • ESA Open-Source Software Supports TerraSAR-X
  • New KVH TracVision M5 And M7 Deliver Stronger Signals For Superior Onboard Satellite TV
  • New Metal Crystals Formed On A Cotton Assembly Line
  • Mobile Phones Can Soon Survive Being Dropped

  • Students Rack Up Wins At Local Robotics Competition
  • Talking Bots
  • Novel Salamander Robot Crawls Its Way Up The Evolutionary Ladder
  • Look Ma, No Hands, No Humans

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement