GPS News  
SOLAR DAILY
Twisting, flexible crystals key to solar energy production
by Staff Writers
Durham NC (SPX) Mar 17, 2021

A key contributor to how these halide perovskites create and transport electricity literally hinges on the way their octahedral atomic lattice twists and turns in a hinge-like fashion.

Researchers at Duke University have revealed long-hidden molecular dynamics that provide desirable properties for solar energy and heat energy applications to an exciting class of materials called halide perovskites.

A key contributor to how these materials create and transport electricity literally hinges on the way their atomic lattice twists and turns in a hinge-like fashion. The results will help materials scientists in their quest to tailor the chemical recipes of these materials for a wide range of applications in an environmentally friendly way.

The results appear online March 15 in the journal Nature Materials.

"There is a broad interest in halide perovskites for energy applications like photovoltaics, thermoelectrics, optoelectronic radiation detection and emission - the entire field is incredibly active," said Olivier Delaire, associate professor of mechanical engineering and materials science at Duke. "While we understand that the softness of these materials is important to their electronic properties, nobody really knew how the atomic motions we've uncovered underpin these features."

Perovskites are a class of materials that - with the right combination of elements - are grown into a crystalline structure that makes them particularly well-suited for energy applications. Their ability to absorb light and transfer its energy efficiently makes them a common target for researchers developing new types of solar cells, for example. They're also soft, sort of like how solid gold can be easily dented, which gives them the ability to tolerate defects and avoid cracking when made into a thin film.

One size, however, does not fit all, as there is a wide range of potential recipes that can form a perovskite. Many of the simplest and most studied recipes include a halogen--such as chlorine, fluorine or bromine - giving them the name halide perovskites. In the crystalline structure of perovskites, these halides are the joints that tether adjoining octahedral crystal motifs together.

While researchers have known these pivot points are essential to creating a perovskite's properties, nobody has been able to look at the way they allow the structures around them to dynamically twist, turn and bend without breaking, like a Jell-O mold being vigorously shaken.

"These structural motions are notoriously difficult to pin down experimentally. The technique of choice is neutron scattering, which comes with immense instrument and data analysis effort, and very few groups have the command over the technique that Olivier and his colleagues do," said Volker Blum, professor of mechanical engineering and material science at Duke who does theoretical modeling of perovskites, but was not involved with this study. "This means that they are in a position to reveal the underpinnings of the materials properties in basic perovskites that are otherwise unreachable."

In the study, Delaire and colleagues from Argonne National Laboratory, Oak Ridge National Laboratory, the National Institute of Science and Technology, and Northwestern University, reveal important molecular dynamics of the structurally simple, commonly researched halide perovskite (CsPbBr3) for the first time.

The researchers started with a large, centimeter-scale, single crystal of the halide perovskite, which is notoriously difficult to grow to such sizes - a major reason why this sort of dynamic study has not been achieved before now. They then barraged the crystal with neutrons at Oak Ridge National Laboratory and X-rays at Argonne National Laboratory. By measuring how the neutrons and X-rays bounced off the crystals over many angles and at different time intervals, the researchers teased out how its constituent atoms moved over time.

After confirming their interpretation of the measurements with computer simulations, the researchers discovered just how active the crystalline network actually is. Eight-sided octahedral motifs attached to one another through bromine atoms were caught twisting collectively in plate-like domains and constantly bending back and forth in a very fluid-like manner.

"Because of the way the atoms are arranged with octahedral motifs sharing bromine atoms as joints, they're free to have these rotations and bends," said Delaire. "But we discovered that these halide perovskites in particular are much more 'floppy' than some other recipes. Rather than immediately springing back into shape, they return very slowly, almost more like Jell-O or a liquid than a conventional solid crystal."

Delaire explained that this free-spirited molecular dancing is important to understand many of the desirable properties of halide perovskites. Their 'floppiness' stops electrons from recombining into the holes the incoming photons knocked them out of, which helps them make a lot of electricity from sunlight. And it likely also makes it difficult for heat energy to travel across the crystalline structure, which allows them to create electricity from heat by having one side of the material be much hotter than the other.

Because the perovskite used in the study - CsPbBr3 - has one of the simplest recipes, yet already contains the structural features common to the broad family of these compounds, Delaire believes that these findings likely apply to a large range of halide perovskites. For example, he cites hybrid organic-inorganic perovskites (HOIPs), which have much more complicated recipes, as well as lead-free double-perovskite variants that are more environmentally friendly.

"This study shows why this perovskite framework is special even in the simplest of cases," said Delaire. "These findings very likely extend to much more complicated recipes, which many scientists throughout the world are currently researching. As they screen enormous computational databases, the dynamics we've uncovered could help decide which perovskites to pursue."

Research Report: "Two-Dimensional Overdamped Fluctuations of Soft Perovskite Lattice in CsPbBr3"


Related Links
Duke University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
New analysis of 2D perovskites could shape the future of solar cells and LEDs
Guildford UK (SPX) Mar 17, 2021
An innovative analysis of two-dimensional (2D) materials from engineers at the University of Surrey could boost the development of next-generation solar cells and LEDs. Three-dimensional perovskites have proved themselves remarkably successful materials for LED devices and solar panels in the past decade. One key issue with these materials, however, is their stability, with device performance decreasing quicker than other state-of-the-art materials. The engineering community believes the 2D varian ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Raccoons to snakes: Shanghai animal cafes expand to exotics

'Virtual' pollinator analysis shows importance of biodiversity to food trade

Food drives a third of global emissions: report

Wild genes may help domesticated peaches adapt to climate change

SOLAR DAILY
EU wants to double microchip share by 2030

How the world ran out of semiconductors

New microcomb could help discover exoplanets and detect diseases

A quantum internet is closer to reality, thanks to this switch

SOLAR DAILY
Navy test demonstrates it can deliver an F-35 engine to an aircraft carrier

Lockheed Martin's new sustainment depot receives its first F-16

Facility upgrades propel green aviation at NASA

Germany cleared to buy 5 P-8A maritime patrol aircraft for $1.77B

SOLAR DAILY
Commercial truck electrification is within reach

UK city where Romans bathed penalises polluting cars

Israeli 5-minute battery charge aims to fire up electric cars

Honda launches advanced self-driving cars in Japan

SOLAR DAILY
Gig economy: Free ride is over as workers strike back

Asian markets rally on Fed growth, rate outlook

US expands list of Chinese officials stifling Hong Kong's freedoms

Tough talk at first face-to-face US, China meeting in Biden era

SOLAR DAILY
One dead, several missing in Argentina forest fires

Desert country Jordan aims for green with 10-million tree campaign

Amazon indigenous groups sue Casino chain over deforestation

The simple 'seedballs' giving Kenya's forests a helping hand

SOLAR DAILY
Bentley Systems to Acquire Seequent

Contract signed to build Arctic weather satellite

How much longer will the oxygen-rich atmosphere be sustained on Earth?

ESA Eyes On Earth: Galapagos Islands

SOLAR DAILY
New "metalens" shifts focus without tilting or moving

Nanowire could provide a stable, easy-to-make superconducting transistor

New technique builds super-hard metals from nanoparticles

Scientists see competition of magnetic orders from 2D sheets of atoms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.