GPS News  
IRON AND ICE
Turbulent times revealed on Asteroid 4 Vesta
by Staff Writers
Perth, Australia (SPX) Feb 27, 2020

A last look back at Vesta: This image is from the last sequence of images the NASA Dawn spacecraft obtained of the giant asteroid Vesta, looking down at Vesta's north pole as it was departing.

Planetary scientists at Curtin University have shed some light on the tumultuous early days of the largely preserved protoplanet Asteroid 4 Vesta, the second largest asteroid in our Solar System.

Research lead Professor Fred Jourdan, from Curtin University's school of Earth and Planetary Sciences, said Vesta is of tremendous interest to scientists trying to understand more about what planets are made of, and how they evolved.

"Vesta is the only largely intact asteroid which shows complete differentiation with a metallic core, a silicate mantle and a thin basaltic crust, and it's also very small, with a diameter of only about 525 kilometres," Professor Jourdan said.

"In a sense it's like a baby planet, and therefore it is easier for scientists to understand it than say, a fully developed, large, rocky planet."

To give you an idea of its size, you could squeeze at least three Vesta-size asteroids side by side in the state of New South Wales, Australia.

Vesta was visited by the NASA Dawn spacecraft in 2011, when it was observed that the asteroid had a more complex geological history than previously thought. With the aim of hoping to understand more about the asteroid, the Curtin research team analysed well-preserved samples of volcanic meteorites found in Antarctica that were identified as having fallen to Earth from Vesta.

"Using an argon-argon dating technique, we obtained a series of very precise ages for the meteorites, which gave us four very important pieces of new information about timelines on Vesta," Professor Jourdan said.

"Firstly, the data showed that Vesta was volcanically active for at least 30 million years after its original formation, which happened 4,565 million years ago. While this may seem short, it is in fact significantly longer than what most other numerical models predicted, and was unexpected for such a small asteroid.

"Considering that all the heat-providing radioactive elements such as aluminium 26 would have completely decayed by that time, our research suggests pockets of magmas must have survived on Vesta, and were potentially related to a slow-cooling partial magma ocean located inside the asteroid's crust."

Co-researcher Dr Trudi Kennedy, also from Curtin's School of Earth and Planetary Sciences, said the research also showed the timeframes when very large impacts from asteroids striking Vesta were carving out craters of ten or more kilometres deep from the asteroid's volcanically active crust.

"To put this into perspective, imagine a large asteroid smashing into the main volcanic island of Hawaii and excavating a crater 15 kilometres deep - that gives you an idea of what tumultuous activity was happening on Vesta in the early days of our Solar System," Dr Kennedy said.

Scientists further explored the data to understand what was happening deeper in the asteroid by calculating how long it took for Vesta's deep crustal layer to cool down. Some of these rocks were located too deep in the crust to be affected by asteroid impacts, and yet, being relatively close to the mantle, they were strongly affected by the natural heat gradient of the protoplanet and were metamorphosed as a result.

"What makes this interesting is that our data further confirms the suggestion that the first flows of erupted lava on Vesta were buried deep into its crust by more recent lava flows, essentially layering them on top of each other. They were then 'cooked' by the heat of the protoplanet's mantle, modifying the rocks," Dr Kennedy said.

The team also concluded that the meteorites they analysed were excavated from Vesta during a large impact, possibly 3.5 billion years ago, and were agglomerated deep into a rubble pile asteroid, where they were protected from any subsequent impacts.

A rubble pile asteroid is formed when a group of ejected rocks assemble under their own gravity, creating an asteroid that is essentially a pile of rocks clumped together.

"This is very exciting for us because our new data brings lots of new information about the first 50 million years or so of Vesta's early history, which any future models will now have to take in to account," Dr Kennedy said.

"It also raises the point that if volcanism could last longer than previously thought on the protoplanet, then maybe volcanism on the early Earth itself might have been more energetic than we currently think."

Research paper


Related Links
Curtin University
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
OSIRIS-REx Osprey Flyover
Greenbelt MD (SPX) Feb 14, 2020
On Feb. 11, NASA's OSIRIS-REx spacecraft safely executed a 0.4-mile (620-m) flyover of the backup sample collection site Osprey as part of the mission's Reconnaissance B phase activities. Preliminary telemetry, however, indicates that the OSIRIS-REx Laser Altimeter (OLA) did not operate as expected during the 11-hour event. The OLA instrument was scheduled to provide ranging data to the spacecraft's PolyCam imager, which would allow the camera to focus while imaging the area around the sample coll ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
New artificial intelligence algorithm better predicts corn yield

Struggling Morocco oasis risks becoming mirage

Chinese restaurants starved for cash as virus hits industry

China considers 'complete ban' on wildlife trade

IRON AND ICE
Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch

New material has highest electron mobility among known layered magnetic materials

New Argonne etching technique could advance the way semiconductor devices are made

Artificial atoms create stable qubits for quantum computing

IRON AND ICE
Optimised flight routes for climate-friendly air transport

Hill AFB celebrates F-35s 'full warfighting capability'

Japan firm lands massive Sri Lanka airport contract

Transportation Command head questions Air Force's plan for refueler upgrades

IRON AND ICE
Plastic shields protect China's ride-hailing drivers against virus

Tesla resumes work on German plant after court ruling

Virus-hit Jaguar rushes car parts to UK in suitcases: reports

Tesla shifts gears with plans to issue more shares

IRON AND ICE
Russia counts China trade losses from coronavirus

Trump economic advisor sees no US recession ahead

'Fiscal hawks' now endangered as US shrugs at debt

China shutdowns to impact economy: White House economist

IRON AND ICE
Bushfires burned a fifth of Australia's forest: study

Hurricanes benefit mangroves in Florida's Everglades, study finds

Satellite image data reveals rapid decline of China's intertidal wetlands

Hungary's Orban vows to plant 10 trees for every newborn

IRON AND ICE
NASA, New Zealand Partner to Collect Climate Data from Commercial Aircraft

Utilis partners with SITE Technologies to provide next-generation total property assessment

Pleiades Neo well on track for launch mid-2020

The unexpected link between the ozone hole and Arctic warming

IRON AND ICE
Deep-sea osmolyte makes biomolecular machines heat-tolerant

Nanobubbles in nanodroplets

New production method for carbon nanotubes gets green light

A quantum breakthrough brings a technique from astronomy to the nano-scale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.