GPS News  
ENERGY TECH
Turbocharging fuel cells with a multifunctional catalyst
by Staff Writers
Atlanta GA (SPX) Mar 16, 2018

A new catalyst to turbocharge the processing of oxygen in fuel cells: Regents' Professor Meilin Liu (left) with postdoctoral research associate Yu Chen in Liu's Georgia Tech lab as they display a disc coated with the catalyst, which works in two phases. The new material also preserves cathodes in solid oxide fuel cells. Image courtesy Georgia Tech / Christopher Moore

Powering clean, efficient cars is just one way fuel cell technology could accelerate humanity into a sustainable energy future, but unfortunately, the technology has been a bit sluggish. Now, engineers may be able to essentially turbocharge fuel cells with a new catalyst.

The sluggishness comes from a chemical bottleneck, the rate of processing oxygen, a key ingredient that helps fuel cells, which are related to batteries, produce electricity. The new catalyst, a nanotechnology material developed by engineers at the Georgia Institute of Technology, markedly speeds up oxygen processing and is the subject of a new study.

Partly to accommodate oxygen's limitations, fuel cells usually require pure hydrogen fuel, which reacts with the oxygen taken in from the air, but the costs of producing the hydrogen have been prohibitive. The new catalyst is a potential game-changer.

"It can easily convert chemical fuel into electricity with high efficiency," said Meilin Liu, who led the study and is a Regents' Professor in Georgia Tech's School of Material Science and Engineering. "It can let you use readily available fuels like methane or natural gas or just use hydrogen fuel much more efficiently," Liu said.

Catalyst 8 times as fast
The catalyst achieves the efficiency by rushing oxygen through a fuel cell's system. "It's more than eight times as fast as state-of-the-art materials doing the same thing now," said Yu Chen, a postdoctoral research associate in Liu's lab and the study's first author.

There are a few types of fuel cells, but the researchers worked to improve solid oxide fuel cells, which are found in some prototypical fuel cell cars. The research insights could also aid in honing supercapacitors and technology paired with solar panels, thus advancing sustainable energy beyond the new catalyst's immediate potential to improve upon fuel cells.

Liu and Chen published their study in the March issue of the journal Joule. Their research was funded by the U.S. Department of Energy and by the Guangdong Innovative and Entrepreneurial Research Program. The fuel cell work from Liu's lab has already attracted significant energy industry and automotive industry interest.

Naturally sluggish oxygen
Though they work differently from fuel cells and are much less efficient and clean, combustion engines make a useful metaphor to aid in understanding how fuel cells and the new catalyst work.

In a combustion engine, fuel from a tank and oxygen from the air come together to react in an explosion, producing energy that turns a crankshaft. Adding a turbocharger speeds the process up by mixing fuel and oxygen together more quickly and rushing them to combustion.

Currently, in fuel cells, hydrogen fuel from a tank and oxygen from the air also drive a process that produces energy, in this case, electricity. The two ingredients do come together in a reaction, but one very different from combustion, and much cleaner.

One end of the fuel cell, the anode, removes electrons from the hydrogen atoms in what's called oxidation and sends the electrons through an external circuit as electric current to the cathode on the other side. There, oxygen, which is notoriously electron hungry, sucks the electrons up in what's called reduction, and that keeps the electricity flowing.

The hydrogen, now positively charged, and the oxygen, now negatively charged, meet up to form water, which is the fuel cell's exhaust.

In that reaction chain, oxygen is the slow link in two ways: Oxygen's reduction takes longer than hydrogen's oxidation, and the reduced oxygen moves more slowly through the system to meet with hydrogen. Analogous to the turbocharger, the new catalyst pushes the oxygen forward.

Nano oxygen rush
The catalyst is applied as a sheer coating only about two dozen nanometers thick and is comprised of two connected nanotechnology solutions that break both oxygen bottlenecks.

First, nanoparticles highly attractive to oxygen grab the O2 molecule and let inflowing electrons quickly jump onto it, easily reducing it and tearing it into two separate oxygen ions (each one an O2-). Then a series of chemical gaps called oxygen vacancies that are built into the nanoparticles' structures suck up the oxygen ions like chains of vacuum cleaners passing the ions hand to hand to the second phase of the catalyst.

The second phase is a coating that is full of oxygen vacancies that can pass the O2- even more rapidly toward its final destination.

"The oxygen goes down quickly through the channels and enters the fuel cell, where it meets with the ionized hydrogen or another electron donor like methane or natural gas."

The ions meet to make water, which exits the fuel cell. In the case of methane fuel, pure CO2 is also emitted, which can be captured and recycled back into fuel.

Interesting rare metals
In the first stage, there are two different flavors of nanoparticle at work. Both have cobalt, but one contains barium and the other praseodymium, a rare-earth metal that can be pricey in high quantities.

"Praseodymium is in such very small amounts that it doesn't impact costs," Liu said. "And the catalyst saves lots of money on fuel and on other things."

High operating temperatures in existing fuel cells require expensive protective casings and cooling materials. The researchers believe the catalyst could help lower the temperatures by reducing electrical resistance inherent in current fuel cell chemistry. That could, in turn, reduce overall material costs.

Protective cathode coating
The second stage of the catalyst is a lattice that contains praseodymium and barium, as well as calcium and cobalt (PBCC). In addition to its catalytic function, the PBCC coating protects the cathode from degradation that can limit the lifetime of fuel cells and similar devices.

The underlying original cathode material, which contains the metals lanthanum, strontium, cobalt, and iron (LSCF), has become an industry standard but comes with a caveat.

"It's very conductive, very good, but the problem is that strontium undergoes a diminishment called segregation in the material," Liu said. "One component of our catalyst, PBCC, acts as a coating and keeps the LSCF a lot more stable."

LSCF manufacturing is already well-established, and adding the catalyst coating to production could be likely reasonably achieved. Liu also is considering replacing the LSCF cathode completely with the new catalyst material, and his lab is developing a yet another catalyst to boost fuel oxidation reactions at the fuel cell's anode.

Research paper


Related Links
Georgia Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
RMIT researchers make battery breakthrough
Melbourne, Australia (SPX) Mar 14, 2018
Researchers from RMIT University in Melbourne, Australia have demonstrated for the first time a working rechargeable "proton battery" that could re-wire how we power our homes, vehicles and devices. The rechargeable battery is environmentally friendly, and has the potential, with further development, to store more energy than currently-available lithium ion batteries. Potential applications for the proton battery include household storage of electricity from solar photovoltaic panels, as don ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Ag robot speeds data collection, analyses of crops as they grow

Scientists engineer crops to conserve water, resist drought

Agricultural sustainability project reached 21 million smallholder farmers across China

Commercial pesticides: Not as safe as they seem

ENERGY TECH
Researchers find 'critical' security flaws in AMD chips

New speed record for trapped-ion 'building blocks' of quantum computers

Largest molecular spin found close to a quantum phase transition

Practical spin wave transistor one step closer

ENERGY TECH
Evading in-flight lightning strikes

F-35Bs get first operational deployment with Marine Expeditionary Unit

MH370 hunt likely to end mid-June: official

Air Force awards contract for jet fighter training programs

ENERGY TECH
VW boss 'convinced of diesel renaissance'

VWs using more diesel, failing pollution tests after recalls: study

China's bike-share app Ofo raises $850 mn to expand overseas

Japan car giants team up to build hydrogen stations

ENERGY TECH
China's industrial output posts strong start to 2018

China says still talking with US on trade

China rejects Canadian accusation of steel dumping

Trump tariffs chip away at world's free trade credo

ENERGY TECH
Payments to protect carbon stored in forests must increase to defend against rubber

Tropical forest response to drought depends on age

Chanel attacked for felling trees for Paris fashion show

African jobs at risk over French wood giant bankruptcy

ENERGY TECH
Full house for EDRS

Study discovers South African wildfires create climate cooling

NASA space laser completes 2,000-mile road trip

Where fresh is cool in Bay of Bengal

ENERGY TECH
UCLA researchers develop a new class of two-dimensional materials

Mining hardware helps scientists gain insight into silicon nanoparticles

New technique allows printing of flexible, stretchable silver nanowire circuits

Nanomaterials: What are the environmental and health risks?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.