GPS News  
CHIP TECH
Transistors can now both process and store information
by Staff Writers
West Lafayette IN (SPX) Dec 10, 2019

Researchers have created a more feasible way to combine transistors and memory on a chip, potentially bringing faster computing.

A computer chip processes and stores information using two different devices. If engineers could combine these devices into one or put them next to each other, then there would be more space on a chip, making it faster and more powerful.

Purdue University engineers have developed a way that the millions of tiny switches used to process information - called transistors - could also store that information as one device.

The method, detailed in a paper published in Nature Electronics, accomplishes this by solving another problem: combining a transistor with higher-performing memory technology than is used in most computers, called ferroelectric RAM.

Researchers have been trying for decades to integrate the two, but issues happen at the interface between a ferroelectric material and silicon, the semiconductor material that makes up transistors. Instead, ferroelectric RAM operates as a separate unit on-chip, limiting its potential to make computing much more efficient.

A team led by Peide Ye, the Richard J. and Mary Jo Schwartz Professor of Electrical and Computer Engineering at Purdue, discovered how to overcome the mortal enemy relationship between silicon and a ferroelectric material.

"We used a semiconductor that has ferroelectric properties. This way two materials become one material, and you don't have to worry about the interface issues," Ye said.

The result is a so-called ferroelectric semiconductor field-effect transistor, built in the same way as transistors currently used on computer chips.

The material, alpha indium selenide, not only has ferroelectric properties, but also addresses the issue of a conventional ferroelectric material usually acting as an insulator rather than a semiconductor due to a so-called wide "band gap," which means that electricity cannot pass through and no computing happens.

Alpha indium selenide has a much smaller band gap, making it possible for the material to be a semiconductor without losing ferroelectric properties.

Mengwei Si, a Purdue postdoctoral researcher in electrical and computer engineering, built and tested the transistor, finding that its performance was comparable to existing ferroelectric field-effect transistors, and could exceed them with more optimization. Sumeet Gupta, a Purdue assistant professor of electrical and computer engineering, and Ph.D. candidate Atanu Saha provided modeling support.

Si and Ye's team also worked with researchers at the Georgia Institute of Technology to build alpha indium selenide into a space on a chip, called a ferroelectric tunneling junction, which engineers could use to enhance a chip's capabilities. The team presents this work on Dec. 9 at the 2019 IEEE International Electron Devices Meeting.

In the past, researchers hadn't been able to build a high-performance ferroelectric tunneling junction because its wide band gap made the material too thick for electrical current to pass through. Since alpha indium selenide has a much smaller band gap, the material can be just 10 nanometers thick, allowing more current to flow through it.

More current allows a device area to scale down to several nanometers, making chips more dense and energy efficient, Ye said. A thinner material - even down to an atomic layer thick - also means that the electrodes on either side of a tunneling junction can be much smaller, which would be useful for building circuits that mimic networks in the human brain.

Research paper


Related Links
Purdue University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
A platform for stable quantum computing, a playground for exotic physics
Boston MA (SPX) Dec 09, 2019
Move over Godzilla vs. King Kong - this is the crossover event you've been waiting for. Well, at least if you're a condensed matter physicist. Harvard University researchers have demonstrated the first material that can have both strongly correlated electron interactions and topological properties. Not entirely sure what that means? Don't worry, we'll walk you through it. All you need to know right now is that this discovery not only paves the way for more stable quantum computing but also an entirely n ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Satellites track status of America's food supply

US tweaks restrictions on 'cyanide bomb' anti-predator devices

France bans two US pesticides, citing risk to bees

Austria's glyphosate ban thrown into doubt

CHIP TECH
Scientists see defects in potential new semiconductor

A platform for stable quantum computing, a playground for exotic physics

Toward more efficient computing, with magnetic waves

A record-setting transistor

CHIP TECH
Troubled Hong Kong Airlines allowed to keep operating

AFRL illuminates flight lines with next generation light cart

Electric aircraft - novel configurations open up new possibilities

Bell Boeing awarded $218.7M for V-22 Osprey support

CHIP TECH
Activists sabotage 'ecologically catastrophic' e-scooters in France

Mass English lawsuit over VW 'dieselgate' reaches court

China to target quarter of vehicle sales to be electric by 2025

BMW to build electric Mini in China

CHIP TECH
China exports fall in November, imports recover

World Bank to reduce lending to China

China says no 'time limit' on trade deal

US debate on internet liabilty spills over to global trade deals

CHIP TECH
Four get 50-year terms in Honduras for activist murder

Drogba kicks off 'million trees' project in Ivory Coast

Deforestation in Brazil's Amazon highest since 2008: official

Paying countries not to chop down forests works, study shows

CHIP TECH
China launches new Earth observation satellite

The Eurasian continent remembers and amplifies cold waves as the Arctic warms

NASA embarks on 5 expeditions targeting air, land and sea across US

NASA, French space laser measures massive migration of ocean animals

CHIP TECH
SMART discovers breakthrough way to look at the surface of nanoparticles

Visible light and nanoparticle catalysts produce desirable bioactive molecules

Flexible, wearable supercapacitors based on porous nanocarbon nanocomposites

Scientists create a nanomaterial that is both twisted and untwisted at the same time









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.