Subscribe free to our newsletters via your
. GPS News .




EARLY EARTH
Tiny fossils hold answers to big questions on climate change
by Staff Writers
Cardiff UK (SPX) Jan 24, 2013


Ice derived from land has a very distinctive ratio of oxygen isotopes. This research is the highest resolution application in coastal Antarctic marine sediments of a technique to measure the oxygen isotope ratios of microscopic marine algae fossils (diatom silica). When a large amount of glacial ice is discharged into the coastal ocean, this alters the oxygen isotope ratio of the sea water that the marine algae are living in.

The western Antarctic Peninsula is one of the fastest warming regions on the planet, and the fastest warming part of the Southern Hemisphere. Scientists have debated the causes of this warming, particularly in light of recent instrumental records of both atmospheric and oceanic warming from the region. As the atmosphere and ocean warm, so the ice sheet (holding an equivalent of 5 metres of global sea level rise, locked up in ice) becomes vulnerable to collapse.

Now research led by Cardiff University published in Nature Geoscience has used a unique 12,000 year long record from microscopic marine algae fossils to trace glacial ice entering the ocean along the western Antarctic Peninsula.

The study has found that the atmosphere had a more significant impact on warming along the western Antarctic Peninsula than oceanic circulation in the late Holocene (from 3500-250 years ago).

This was not the case prior to 3500 years ago, and is not the case in the modern environment. The study has also shown that this late Holocene atmospheric warming was cyclic (400-500 year long cycles) and linked to the increasing strength of the El Nino - Southern Oscillation phenomenon (a climate pattern centred in the low latitude Pacific Ocean) demonstrating an equatorial influence on high latitude climate.

Dr Jennifer Pike, School of Earth and Ocean Sciences said: "Our research is helping to understand the past dynamic behaviour of the Antarctic Peninsula Ice Sheet.

The implications of our findings are that the modern observations of ocean-driven warming along the western Antarctic Peninsula need to be considered as part of a natural centennial timescale cycle of climate variability, and that in order to understand climate change along the Antarctic Peninsula, we need to understand the broader climate connections with the rest of the planet."

Ice derived from land has a very distinctive ratio of oxygen isotopes. This research is the highest resolution application in coastal Antarctic marine sediments of a technique to measure the oxygen isotope ratios of microscopic marine algae fossils (diatom silica). When a large amount of glacial ice is discharged into the coastal ocean, this alters the oxygen isotope ratio of the sea water that the marine algae are living in.

This creates a clear imprint in the fossils that reveals the environmental conditions of the time. The scientists used the oxygen isotope ratio of the fossils to reconstruct the amount of glacial ice entering the coastal ocean in the past 12,000 years, and to determine whether the variations in the amount of ice being discharged were the result of changes in the ocean or atmospheric environment.

Professor Melanie Leng, from the British Geological Survey and Chair of Isotope Geosciences in the Department of Geology, University of Leicester, said:

"Technologically the analysis of the oxygen isotope composition of diatom silica is extremely difficult, the British Geological Survey is one of a very few research organisations in the world that can undertake this type of analysis.

For this research project the methodology has been developed over the last five years with the specific aim of investigating the different amounts of melting in the polar regions. It's fair to say we are world leading pioneers in this technique."

The research is co-authored with Cardiff University by the universities of Nottingham, Leicester and the British Geological Survey and was funded by the Natural Environment Research Council (NERC).

.


Related Links
Cardiff University
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Studying ancient Earth's geochemistry
Washington, DC (SPX) Jan 22, 2013
Researchers still have much to learn about the volcanism that shaped our planet's early history. New evidence from a team led by Carnegie's Frances Jenner demonstrates that some of the tectonic processes driving volcanic activity, such as those taking place today, were occurring as early as 3.8 billion years ago. Their work is published in Geology. Upwelling and melting of the Earth's mant ... read more


EARLY EARTH
Bacterial supplement could help young pigs fight disease

USDA Studies Confirm Plant Water Demands Shift with Water Availability

First Global Assessment of Land and Water 'Grabbing'

Cotton could be desert water source

EARLY EARTH
DARPA, Industry Collaborate to Knock Down Microelectronics Barriers

New 2D material for next generation high-speed electronics

UGA researchers invent new material for warm-white LEDs

Intel profits slide, outlook weak as woes continue

EARLY EARTH
China buys Russian bombers

Sikorsky, Boeing Partner for Joint Multi-Role Future Vertical Lift Requirements

Airlines turn profit from EU freeze on carbon tax: environmentalists

Brazil signs deal to manufacture 'copters

EARLY EARTH
European collaboration to prepare European electricity networks for influx of electric vehicles

Does everyone think someone else should drive a green car?

Lexus to launch hybrid sedan in Japan, Europe

Jeep to build cars in China with GAC

EARLY EARTH
Japan logs record trade deficit in 2012

China manufacturing growth hits two-year high

US software engineer outsources his job to China

Apple, Google chiefs face grilling on 'no-poaching'

EARLY EARTH
Prosecutors take issue with Brazil's new forestry code

Climate change's effects on temperate rain forests surprisingly complex

Trading wetlands no longer a deal with the devil

Study Finds Severe Climate Jeopardizing Amazon Forest

EARLY EARTH
RapidEye Commits to Data Continuity; Discusses System Health and Life Span

Pleiades 1B captures its first images using e2v sensors

NASA's Interface Region Imaging Spectrograph Mission Satellite Completed

Landsat Senses a Disturbance in the Forest

EARLY EARTH
A nano-gear in a nano-motor inside

New Research Gives Insight into Graphene Grain Boundaries

Chemistry resolves toxic concerns about carbon nanotubes

Engineer making rechargeable batteries with layered nanomaterials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement