Subscribe free to our newsletters via your
. GPS News .




BLUE SKY
The physics of clouds
by Staff Writers
Santa Barbara CA (SPX) Mar 16, 2015


Cloud streets -- long rows of cumulus clouds oriented parallel to the direction of the wind -- are an everyday example of natural turbulent convection. Image courtesy MODIS Rapid Response Team at NASA GSFC.

In 1941, Russian physicist Andrey Kolmogorov developed a theory of turbulence that has served as the basic foundation for our understanding of this important naturally occurring phenomenon.

Turbulence occurs when fluid flow is characterized by chaotic physical changes. Kolmogorov's theory has been interpreted to imply that transitions from one state of turbulence to another must be a smooth evolution because very intense fluctuations that are part of the process itself would smooth out anything sharp.

Now, however, a new experiment conducted by physicists at UC Santa Barbara disproves this interpretation of Kolmogorov's theory. Their results appear this week in the journal Physical Review Letters.

"In our paper we offer experimental evidence that these transitions are indeed sharp," said Guenter Ahlers, a professor in UCSB's Department of Physics. "We have been enlightened by these data and they have shown us that the interpretation of Kolmogorov was incorrect. To a physicist that is a very important step forward."

Ahlers and his postdoctoral co-workers Ping Wei and Stephan Weiss study turbulent convection, which plays a major role in numerous natural and industrial processes. Turbulent convection results when a contained fluid is heated from below and cooled from above. As the temperature differential increases, the convective flow becomes so vigorous that the velocity field becomes turbulent.

Using a cylindrical rotating system built by Ahlers' team, the researchers heated the fluid from the bottom so it expanded and became less dense than the liquid at the top. Earth's gravity caused the liquids to change positions with each other, which in turn created turbulence. Then the scientists added rotation.

"When you rotate, you get new forces acting, including the Coriolis Force -- a product of the Earth's rotation as well as of rotation in the laboratory -- which spins the liquid into little vortices or tornadoes," explained Ahlers.

"So the system is full of little tornadoes near the heating plate and also near the top -- only there, they are cold tornadoes," Ahlers added. "At first, these tornadoes are not connected because they are relatively short. But as you rotate the cylinder faster and faster, the tornadoes extend and eventually form columns over this whole system. When that happens, physicists say that the symmetry of the system changes."

The next step for Ahlers and his team was to measure the heat transport -- the exchange of thermal energy -- which is expressed by the Nusselt number. Wilhelm Nusselt was a German engineer in the early 1900s who measured the heat transport through double window panes.

"If you look at the Nusselt number, it has these breaks, which indicates that the heat transport does not change smoothly as the rotation rate is increased," Ahlers said. "By the way, Lev Landau told us that a long time ago. And while Landau wasn't talking about turbulent systems, his arguments can be directly carried over to the turbulence state."

Ahlers was referring to another Russian physicist, and a Nobel laureate, who theorized that when the symmetry of a system changes, the change must be sharp. It cannot be smooth because a system has only two states: disordered or ordered and there is nothing in between.

"The trouble is that people in turbulence never thought about Landau because he was in a completely different field and the information doesn't get carried across because there's just too much of it," Ahlers added. "But I worked in the field of critical phenomena for many, many years and know Landau's work very well. Then I changed to studying turbulence, and when this issue popped up, it was obvious to me what was going on."

In the paper, the researchers use cloud streets -- long rows of cumulus clouds oriented parallel to the direction of the wind -- as an everyday example of natural turbulent convection. These flat-bottomed, fluffy-topped clouds are formed when cold air blows over warmer waters and a warmer air layer (temperature inversion) rests over the top of both.

As the comparatively warm water gives up heat and moisture to the cold air above, columns of heated air called thermals naturally rise through the atmosphere. When the rising thermals hit the warm air layer, they roll over and loop back on themselves, creating parallel cylinders of rotating air that act similarly to the fluid in Ahlers' cylindrical rotating system. While the process sounds smooth, Ahlers' latest experiment proves that it is anything but.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Barbara
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





BLUE SKY
Igniting the air for atmospheric research
Vienna, Austria (SPX) Feb 20, 2015
It looks a bit like a lightsaber from Star Wars: when an extremely intense laser pulse is sent through the air, it can focus itself, creating a narrow filament of light. By shooting such filaments into the sky and analysing back-scattered light, it would be possible to trace pollutants in the atmosphere. To achieve this, lasers with mid-infrared wavelengths are required. However, reaching ... read more


BLUE SKY
'Low risk' bird flu outbreak at Dutch farm: official

Dartmouth-led team identifies circadian clock gene that strengthens crop plant

Early herders' grassy route through Africa

Chinese cyber-dissident takes farmers' land fight online

BLUE SKY
Quantum sensor's advantages survive entanglement breakdown

Strength in numbers

The taming of magnetic vortices

Important step towards quantum computing: Metals at atomic scale

BLUE SKY
Chinese lawyer named first woman to head UN aviation body

No known link between towelette found in Australia and MH370

MH370 report sparks fresh criticism of Malaysia govt, airline

Airlines need to improve despite 'safest' year: IATA chief

BLUE SKY
Lyft secures $530 mn to take on Uber

China's Alibaba drives into 'Internet car' industry

China auto sales edge down in February

Making our highways safer and more efficient

BLUE SKY
Beijing welcomes Britain's move to join China-backed bank: govt

Australian miners brace for more pain as China slows

Commodities mostly drop on soaring dollar, China woes

WTO to help settle Canadian trade rows with China, Taiwan

BLUE SKY
Beijing's forest coverage rate exceeds 40 percent

The green lungs of our planet are changing

Landless Brazilians in GM eucalyptus protest

Direct evidence that drought-weakened Amazonian forests 'inhale less carbon'

BLUE SKY
UNH Instruments to Lift Off on NASA Four-Satellite Mission March 12

NASA's Soil Moisture Mapper Takes First 'SMAPshots'

Google launches virtual tour of Nepal's Everest region

MMS: Studying Magnetic Reconnection Near Earth

BLUE SKY
Magnetic vortices in nanodisks reveal information

Researchers turn unzipped nanotubes into possible alternative for platinum

Experiment and theory unite at last in debate over microbial nanowires

Black phosphorus a new wonder material for optical communication




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.