Subscribe free to our newsletters via your
. GPS News .




INTERN DAILY
The first cancer operation room with a navigator is created
by Staff Writers
Madrid, Spain (SPX) Dec 27, 2013


File image.

A team of researchers from Gregorio Maranon Hospital, the company GMV and the Universidad Carlos III de Madrid (UC3M) have started the first cancer operation room with a navigator. This image-guided system will allow for increased intraoperative radiotherapy safety.

The system, presented at Gregorio Maranon Hospital, permits real-time interaction with the body of the patient (with its different tissues and cancer) as well as the radiotherapy applicator used to radiate the area affected by the tumor. This innovation will be used in the surgery of cancers treated with intraoperative radiotherapy in the hope of achieving greater precision in the radiation of potentially cancerous tissues after the removal of the tumor.

The installation of this new equipment has entailed a complete remodeling of the operating room. The new room, reinforced for this type of procedure, incorporates high-definition screens of high diagnostic quality to visualize the image of the patient in 3-D, three video monitoring cameras and a group of eight infrared cameras for real-time navigation placed in the area of the surgery that enables the surgeon to capture the movement of objects throughout the entire procedure.

This technology shares the same principles of movement capture that are used in cinema and in video games to transfer the movement of actors to animated characters.

Medical personnel will have a 3-D representation of the patient and the applicator that conducts the radiation so that it can be guided into the patient via the high-definition screens of the operating room. On this representation, reconstructed from a previous scan, the placement of the applicator over the tumor bed is observed so that only tissues with cancerous residue or risk predetermined in each patient are radiated.

Moreover, the area, the depth and the dose that any tissue (like skin, bone, muscle, intestines or bladder) will receive can be predetermined and adjusted on-site and healthy tissues can be checked for any additional risk.

This device, developed by scientists within the framework of research projects financed by the Autonomous Region of Madrid, the Ministry of Economy and Competitiveness and FEDER funds, makes the Madrid hospital an international point of reference in technological innovation and the application of research results to daily clinical practice.

Dr. Javier Pascau, professor in the Bioengineering and Aerospace Engineering Department at the UC3M and part of the BIIG research group led by Dr. Manuel Desco, is the head researcher of several research projects that include this development. As he explains, the system employs multiple cameras to locate objects in three-dimensional scenarios like the intraoperative radiotherapy applicator. This information is sent to the planning system, which updates the real position of the applicator over the CAT (Computed Axial Tomography) of the patient and shows it on the screen.

Thanks to this navigation system, the oncologist will be able to compare the current position and orientation of the applicator to the one previously planned and, if necessary, repeat the estimation of the distribution of the dose to adjust the treatment to the actual surgical scenario. The precision of the system, the first stereotactic navigator available in the field of intraoperative radiotherapy, has been evaluated by university researchers and was recently published in Physics in Medicine and Biology.

Intraoperative radiotherapy is an anti-tumor treatment which, after the removal of the cancer, allows doctors to radiate the areas affected by the tumor or parts that could not be eliminated with a high degree of precision. Through this procedure, it is hoped that the cancer then does not reproduce.

In addition, "another advantage of this procedure is that all tumors can receive this treatment, although most of the ones that have been treated--and with very convincing results--were cancers of the digestive system and sarcomas," asserts Felipe Calvo, head of the Oncology Department at Gregorio Maranon Hospital.

Furthermore, Dr. Calvo adds that intelligent systems, like the intraoperative radiotherapy radiance simulator (developed and patented by Maranon Hospital researchers and practitioners and the company GMV) and this new navigator "will make it possible to cut treatment time thanks to the use of large single doses on a very well-defined tumor, protecting healthy tissue at the same time. Intraoperative radiotherapy does not compete with but instead complements chemotherapy and the administration of biological medicines."

Intraoperative radiotherapy has been incorporated into advances in laparoscopic oncological surgery with obvious benefits for the patient, like the reduction of the biological impact of the postoperative period from between 4 and 7 days to 48 hours, and a procedure which requires less invasive surgery. In premature breast cancer, instead of lasting six to eight weeks in the case of conventional treatment, radiation therapy treatment and surgery can be done in only 24 hours.

Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios; Authors: V Garcia-Vazquez. E Marinetto. J A Santos-Miranda. F A Calvo. M Desco. J Pascau.; Physics in Medicine and Biology. Volume: 58. Number: 24. Published 4 December 2013 doi:10.1088/0031-9155/58/24/8769

.


Related Links
Universidad Carlos III de Madrid
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Cells from the eye are inkjet printed for the first time
London, UK (SPX) Dec 19, 2013
A group of researchers from the UK have used inkjet printing technology to successfully print cells taken from the eye for the very first time. The breakthrough, which has been detailed in a paper published today, 18 December, in IOP Publishing's journal Biofabrication, could lead to the production of artificial tissue grafts made from the variety of cells found in the human retina and may ... read more


INTERN DAILY
Extinction risk prompts ban on fishing for caviar-producing sturgeon

The fate of the eels

Genetic discovery points the way to much bigger yields in tomato, other flowering food plants

Researcher says extensive use of antibiotics in agriculture creating public health crisis

INTERN DAILY
Theorists Predict New State of Quantum Matter May Have Big Impact on Electronics

Low-power tunneling transistor for high-performance devices at low voltage

Sharpening the focus in quantum photolithography

The analogue of a tsunami for telecommunication

INTERN DAILY
Cathay Pacific orders 4 more long-haul Boeing planes

China's Zhejiang Loong Airlines confirms order of 20 A320s

Northrop Grumman Expands Support For Japan E-2C Hawkeye Program

20th Anniversary of First B-2 Spirit Delivery

INTERN DAILY
Japanese automakers' sales in China surge in November

GM, Ford to recall more than 1.5 mln cars in China

Golf skateboard aims to rejuvenate 'old man's sport'

China city caps car-buying to curb pollution

INTERN DAILY
Finnish Santa Claus wants to go global, all year round

Finland looks to old foe Russia for new investment

Russia files first WTO complaint against EU

Rusal starts legal case against London Metal Exchange

INTERN DAILY
Debate erupts over plans to harvest burned timber in California

Telecoupling science shows China's forest sustainability packs global impact

Slippery bark protects trees from pine beetle attack

Big data project reveals where carbon-stocking projects in Africa provide the greatest benefits

INTERN DAILY
Van Allen Probes Shed Light on Decades-old Mystery

Planet Labs Raises Financing

The Fantastical Life of a GIS Analyst

Brazil, China to make new satellite launch in 2014

INTERN DAILY
DNA motor 'walks' along nanotube, transports tiny particle

Cellulose nanocrystals possible 'green' wonder material

Microprinting leads to low-cost artificial cells

New magnetic behavior in nanoparticles could lead to even smaller digital memories




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement