![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers New Orleans LA (SPX) Apr 12, 2018
Setting off smoke bombs is more than good fun on the Fourth of July. The military uses smoke grenades in dangerous situations to provide cover for people and tanks on the move. But the smoke arms race is on. Increasingly, sensors can now go beyond the visible range into the infrared (IR) region of the spectrum. Recently, researchers reported developing a new kind of smoke that obscures both visible and IR detection. The researchers presented their work at the 255th National Meeting and Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 13,000 presentations on a wide range of science topics. "Because of the advancement of sensors beyond the visible region, we need new, high-performing obscurants in the infrared region," Zach Zander says. "Each obscurant can absorb or scatter light at a given frequency. Most of the smokes that we use do well in either the visible or IR range. The objective of this program is to create what we call a bispectral obscurant, which works to block visible, as well as infrared detection." To build a better puff of smoke, Zander and his colleagues in the Smoke and Obscurants, Pyrotechnics, and Chemical Biological Filtration Branches started thinking about using a metal organic framework (MOF). Other scientists working at his institute, the U.S. Army's Edgewood Chemical Biological Center, have been studying these stable porous structures, and were working with one called UiO-66 that was made up of terephthalic acid, a known visible obscurant. "The traditional army smoke grenade is made with a toxic material, called hexachloroethane, but terephthalic acid grenades are emerging as a safer alternative," says Zander. The rest of UiO-66 consists of large pores and a zirconium node that researchers proposed could absorb in the IR range. The question was whether UiO-66 would burn in such a way as to liberate the terephthalic acid from the framework, creating a smoke with both an IR-absorbing agent and a visible light obscurant. If the UiO-66 molecule didn't break apart, the terephthalic acid wouldn't be free to block the visible light. In a proof-of-principle experiment, the researchers packed UiO-66 into a grenade along with the pyrotechnic agents that generate the burn. They placed it in a 249-cubic-yard chamber lined with sensors and set off the smoke grenade. "We monitored visible and IR wavelengths," Zander says. "We got some blockage in the visible range, though it wasn't as good as a true terephthalic acid grenade. We think we can improve our performance by changing the recipe of the pyrotechnic portion and thereby better liberate the terephthalic acid from the framework." In the long term, the researchers plan to continue incorporating additional obscurants to the smoke, creating a kind of "Swiss army knife" of smoke grenades. "Ideally, we'd like one smoke device that hits multiple spectra, rather than multiple devices to hit each spectrum individually," Zander says. "The reason this is so important to the army is that you want to minimize the amount of stuff a soldier has to carry. One grenade is definitely easier to haul than five."
![]() ![]() Australia bushfires destroy homes, kill cattle Sydney (AFP) March 19, 2018 High temperatures and strong winds have fuelled large grass and bushfires in Australia, officials said Monday, reducing dozens of houses to ash and killing cattle. Up to 70 homes and buildings were damaged or destroyed in the picturesque seaside village of Tathra on the south coast of New South Wales when a fire tore through the area on Sunday. Some 40,000 hectares (100,000 acres) were also scorched in southwestern regions of neighbouring Victoria as dozens of blazes swept through over the weeke ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |