GPS News  
STELLAR CHEMISTRY
The Best Way To Measure Dark Energy Just Got Better

A Type Ia supernova occurs when a white dwarf accretes material from a companion star until it exceeds the Chandrasekhar limit and explodes. By studying these exploding stars, astronomers can measure dark energy and the expansion of the universe. CfA scientists have found a way to correct for small variations in the appearance of these supernovae, so that they become even better standard candles. The key is to sort the supernovae based on their color. Credit: NASA/CXC/M. Weiss
by Staff Writers
Seattle WA (SPX) Jan 17, 2011
Dark energy is a mysterious force that pervades all space, acting as a "push" to accelerate the Universe's expansion. Despite being 70 percent of the Universe, dark energy was only discovered in 1998 by two teams observing Type Ia supernovae. A Type 1a supernova is a cataclysmic explosion of a white dwarf star.

These supernovae are currently the best way to measure dark energy because they are visible across intergalactic space. Also, they can function as "standard candles" in distant galaxies since the intrinsic brightness is known.

Just as drivers estimate the distance to oncoming cars at night from the brightness of their headlights, measuring the apparent brightness of a supernova yields its distance (fainter is farther). Measuring distances tracks the effect of dark energy on the expansion of the Universe.

The best way of measuring dark energy just got better, thanks to a new study of Type Ia supernovae led by Ryan Foley of the Harvard-Smithsonian Center for Astrophysics.

He has found a way to correct for small variations in the appearance of these supernovae, so that they become even better standard candles. The key is to sort the supernovae based on their color.

"Dark energy is the biggest mystery in physics and astronomy today. Now, we have a better way to tackle it," said Foley, who is a Clay Fellow at the Center. He presented his findings in a press conference at the 217th meeting of the American Astronomical Society.

The new tool also will help astronomers to firm up the cosmic distance scale by providing more accurate distances to faraway galaxies.

Type Ia supernovae are used as standard candles, meaning they have a known intrinsic brightness. However, they're not all equally bright. Astronomers have to correct for certain variations. In particular, there is a known correlation between how quickly the supernova brightens and dims (its light curve) and the intrinsic peak brightness.

Even when astronomers correct for this effect, their measurements still show some scatter, which leads to inaccuracies when calculating distances and therefore the effects of dark energy. Studies looking for ways to make more accurate corrections have had limited success until now.

"We've been looking for this sort of 'second-order effect' for nearly two decades," said Foley.

Foley discovered that after correcting for how quickly Type Ia supernovae faded, they show a distinct relationship between the speed of their ejected material and their color: the faster ones are slightly redder and the slower ones are bluer.

Previously, astronomers assumed that redder explosions only appeared that way because of intervening dust, which would also dim the explosion and make it appear farther than it was. Trying to correct for this, they would incorrectly calculate that the explosion was closer than it appeared. Foley's work shows that some of the color difference is intrinsic to the supernova itself.

The new study succeeded for two reasons. First, it used a large sample of more than 100 supernovae. More importantly, it went back to "first principles" and reexamined the assumption that Type Ia supernovae are one average color.

The discovery provides a better physical understanding of Type Ia supernovae and their intrinsic differences. It also will allow cosmologists to improve their data analysis and make better measurements of dark energy - an important step on the road to learning what this mysterious force truly is, and what it means for the future of the cosmos.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Harvard-Smithsonian Center for Astrophysics
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


STELLAR CHEMISTRY
Astronomers Map Dark Matter In Massive Galaxies
Berkeley CA (SPX) Jan 17, 2011
A team of astronomers led by Dr. David Pooley of Eureka Scientific has made an important determination of the amount of dark matter in massive galaxies using NASA's Chandra X-ray Observatory, providing independent evidence for the dark matter. In addition, these results help map out the distribution of dark matter in elliptical galaxies, which is vital in understanding both galaxy formation and ... read more







STELLAR CHEMISTRY
Climate change could boost crops in US, China

Germany moves to head off more dioxin food scares

Food Prices Insulate Agriculture Sector From Wider Economy Woes

Choosing Organic Milk Could Offset Effects Of Climate Change

STELLAR CHEMISTRY
Intel earnings soar with rise of "cloud" computing

Intel to pay NVIDIA billons in patent dispute

Greenpeace ranks 'greenest' electronics

Better Control Of Building Blocks For Quantum Computer

STELLAR CHEMISTRY
China to buy Boeing planes worth $19 bn

NASA Invites Students To Send Experiments To The Edge Of Space

Runways change as magnetic north moves

F-35 looking more like white elephant

STELLAR CHEMISTRY
US research centre for Chinese carmaker: report

China vows cheaper road tolls after online outcry

China rare earth exports up 14.5% January-November

Toyota working on motors that cut rare earth use

STELLAR CHEMISTRY
Foreign investment in China hits record in 2010

World tourism up sharply last year: UN

China, US sign $600 mln deals in Texas: state media

China property prices higher in December

STELLAR CHEMISTRY
US and Canada at loggerheads over trade deal

US accuses Canada of breaking lumber trade deal

S.Leone minister orders illegal homes in wetlands destroyed

Indonesia president talks tough on forest destroyers

STELLAR CHEMISTRY
3D Model Of Ionosphere F-Region

ISRO Ready To Provide Satellite Images Of Sabarimala

Flooding In Brisbane Suburbs

NASA Research Finds 2010 Tied For Warmest Year On Record

STELLAR CHEMISTRY
New Research Shows How Light Can Control Electrical Properties Of Graphene

EPA to defer greenhouse gas permitting

Obama to regulate carbon from power plants

Romania in talks with Japan on trading carbon credits


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement