GPS News  
TECH SPACE
Texas AM engineers develop recipe to dramatically strengthen body armor
by Staff Writers
College Station, TX (SPX) Jan 24, 2020

A close-up view of boron carbide crystals

According to ancient lore, Genghis Khan instructed his horsemen to wear silk vests underneath their armor to better protect themselves against an onslaught of arrows during battle. Since the time of Khan, body armor has significantly evolved - silk has given way to ultra-hard materials that act like impenetrable walls against most ammunition. However, even this armor can fail, particularly if it is hit by high-speed ammunition or other fast-moving objects.

Researchers at Texas A and M University have formulated a new recipe that can prevent weaknesses in modern-day armor. By adding a tiny amount of the element silicon to boron carbide, a material commonly used for making body armor, they discovered that bullet-resistant gear could be made substantially more resilient to high-speed impacts.

"For the past 12 years, researchers have been looking for ways to reduce the damage caused by the impact of high-speed bullets on armor made with boron carbide," said Dr. Kelvin Xie, assistant professor in the Department of Materials Science and Engineering. "Our work finally addresses this unmet need and is a step forward in designing superior body armor that will safeguard against even more powerful firearms during combat."

Boron carbide, dubbed "black diamond," is a man-made material, which ranks second below another synthetic material called cubic boron nitride for hardness. Unlike cubic boron nitride, however, boron carbide is easier to produce on a large scale. Also, boron carbide is harder and lighter than other armor materials like silicon carbide, making it an ideal choice for protective gear, particularly ballistic vests.

Despite boron carbide's many desirable qualities, its main shortfall is that it can damage very quickly upon high-velocity impact.

"Boron carbide is really good at stopping bullets traveling below 900 meters per second, and so it can block bullets from most handguns quite effectively," said Xie. "But above this critical speed, boron carbide suddenly loses its ballistic performance and is not as effective."

Scientists know high-speed jolts cause boron carbide to have phase transformations - a phenomenon where a material changes its internal structure such that it is in two or more physical states, like liquid and solid, at the same time. The bullet's impact thus converts boron carbide from a crystalline state where atoms are systematically ordered to a glass-like state where atoms are haphazardly arranged. This glass-like state weakens the material's integrity at the site of contact between the bullet and boron carbide.

"When boron carbide undergoes phase transformation, the glassy phase creates a highway for cracks to propagate," said Xie. "So, any local damage caused by the impact of a bullet easily travels throughout the material and causes progressively more damage."

Previous work using computer simulations predicted that adding a small quantity of another element, such as silicon, had the potential to make boron carbide less brittle. Xie and his group investigated if adding a tiny quantity of silicon also reduced phase transformation.

To simulate the initial impact of a high-speed bullet, the researchers made well-controlled dents on boron carbide samples with a diamond tip, whose width is smaller than a human hair. Then, under a high-powered electron microscope, they looked at the microscopic damage that was formed from the blows.

Xie and his collaborators found that even with tiny quantities of silicon, the extent of phase transformation went down by 30%, noticeably reducing the damage from the indentation.

Although silicon serves well to enhance boron carbide's properties, Xie explained that more experiments need to be done to know if other elements, like lithium and aluminum, could also improve boron carbide's performance.

In the near future, Xie predicts these stronger cousins of pure boron carbide will find other nonmilitary applications. One such use is in nuclear shields. He said using a touch of silicon in boron carbide changes the spacing between atoms and the empty spaces created might be good sites to absorb harmful radiation from nuclear reactors.

"Just as in cooking where a small sprinkle of spices can greatly boost flavor, by using a small amount of silicon we can dramatically improve the properties of boron carbide and consequently find novel applications for these ultrahard materials," Xie said.

This study was published in the October issue of the journal Science Advances.

Research paper


Related Links
Texas A and M University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Copper Age Italy hosted large, complex networks of metal exchange
Washington DC (UPI) Jan 23, 2020
During the 4th and 3rd millennia BC, the Late Neolithic, Italy was home to complex metalwork exchange networks, according to new isotopic analysis of Copper Age artifacts. Recent studies have revealed Neolithic populations in Italy were using surprisingly complex technologies to extract copper much earlier than previously thought. Until now, little was known about the movement of copper across the region. For the newest study, published this week in the journal PLOS One, scientists wante ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Aged, recycled urine may be safe alternative to traditional fertilizer

Locusts the latest curse of East Africa weather extremes

New survey results reveal the experts and public's attitude towards gene-edited crops

Cloud cooking land: Indian housewives become gig economy chefs

TECH SPACE
Dutch tech firm caught in US-China row

Generation and manipulation of spin currents for advanced electronic devices

Nano antennas for data transfer

Growing strained crystals could improve performance of perovskite electronics

TECH SPACE
Russian space industry proposes fleet of airships for critical mission

3rd Marine Aircraft Wing receives first F-35C

CMV-22B Osprey completes first flight in Texas

Iran confirms two missiles fired at Ukraine airliner

TECH SPACE
Dutch foundation launches 'Dieselgate' action against VW in France

No pedals, no steering wheel: Cruise unveils autonomous shuttle

EU auto market set for first drop in seven years: carmakers

Payout for Musk as Tesla value tops $100 bn

TECH SPACE
US tells Thunberg to 'study economics' in Davos climate spat

Economy failing on climate and equality: NGOs

UK 'confident' of British Steel's Chinese rescue

'What use is wealth if it burns?' Britain's Prince Charles sounds climate alarm

TECH SPACE
Taking root? Tree-planting new trend in eco-conscious Davos

Amazon indigenous leaders accuse Brazil of 'genocide' policy

Amazon tribes meet to counter Bolsonaro environmental threats

Deforestation in Brazil's Amazon up 85 percent in 2019

TECH SPACE
Ozone-depleting substances caused half of late 20th-century Arctic warming, says study

Capella Space unveils new satellite design for EO platform

Kleos and Geollect sign Channel Partner and Integrator Agreement

Clouds as a factor influencing the climate

TECH SPACE
Nanobubbles in nanodroplets

New production method for carbon nanotubes gets green light

A quantum breakthrough brings a technique from astronomy to the nano-scale

Creating a nanoscale on-off switch for heat









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.