Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Taming Mavericks: Stanford Researchers Use Synthetic Magnetism to Control Light
by Andrew Myers for Stanford News
Stanford CA (SPX) Nov 01, 2012


Professor Shanhui Fan (center), post-doctoral scholar Zongfu Yu (right), both of the Stanford School of Engineering, and doctoral candidate Kejie Fang (left), of the Department of Physics, have used synthetic magnetism to control the flow of light at the nanoscale. Photo: Norbert von der Groeben.

Magnetically speaking, photons are the mavericks of the engineering world. Lacking electrical charge, they are free to run even in the most intense magnetic fields. But all that may soon change. In a paper published in Nature Photonics, an interdisciplinary team from Stanford University reports that it has created a device that tames the flow of photons with synthetic magnetism.

The process breaks a key law of physics known as the time-reversal symmetry of light and could yield an entirely new class of devices that use light instead of electricity for applications ranging from accelerators and microscopes to speedier on-chip communications.

"This is a fundamentally new way to manipulate light flow. It presents a richness of photon control not seen before," said Shanhui Fan, a professor of electrical engineering at Stanford and senior author of the study.

A Departure
The ability to use magnetic fields to redirect electrons is a founding principle of electronics, but a corollary for photons had not previously existed. When an electron approaches a magnetic field, it meets resistance and opts to follow the path of least effort, travelling in circular motion around the field. Similarly, this new device sends photons in a circular motion around the synthetic magnetic field.

The Stanford solution capitalizes on recent research into photonic crystals - materials that can confine and release photons. To fashion their device, the team members created a grid of tiny cavities etched in silicon, forming the photonic crystal.

By precisely applying electric current to the grid they can control - or "harmonically tune," as the researchers say - the photonic crystal to synthesize magnetism and exert virtual force upon photons. The researchers refer to the synthetic magnetism as an effective magnetic field.

The researchers reported that they were able to alter the radius of a photon's trajectory by varying the electrical current applied to the photonic crystal and by manipulating the speed of the photons as they enter the system. This dual mechanism provides a great degree of precision control over the photons' path, allowing the researchers to steer the light wherever they like.

Broken Laws
In fashioning their device, the team has broken what is known in physics as the time-reversal symmetry of light. Breaking time-reversal symmetry in essence introduces a charge on the photons that reacts to the effective magnetic field the way an electron would to a real magnetic field.

For engineers, it means that a photon travelling forward will have different properties than when it is traveling backward, the researchers said, and this yields promising technical possibilities.

"The breaking of time-reversal symmetry is crucial as it opens up novel ways to control light. We can, for instance, completely prevent light from traveling backward to eliminate reflection," said Fan.

The new device, therefore, solves at least one major drawback of current photonic systems that use fiber optic cables. Photons tend to reverse course in such systems, causing a form of reflective noise known as backscatter.

"Despite their smooth appearance, glass fibers are, photonically speaking, quite rough. This causes a certain amount of backscatter, which degrades performance," said Kejie Fang, a doctoral candidate in the Department of Physics at Stanford and the first author of the study.

In essence, once a photon enters the new device it cannot go back. This quality, the researchers believe, will be key to future applications of the technology as it eliminates disorders such as signal loss common to fiber optics and other light-control mechanisms.

"Our system is a clear direction toward demonstrating on-chip applications of a new type of light-based communication device that solves a number of existing challenges," said Zongfu Yu, a post-doctoral researcher in Shanhui Fan's lab and co-author of the paper. "We're excited to see where it leads."

Andrew Myers is associate director of communications for the Stanford University School of Engineering.

.


Related Links
Stanford University, School of Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Near-atomically flat silicon could help pave the way to new chemical sensors
Tampa, FL (SPX) Oct 30, 2012
Silicon is the workhorse of the electronics industry, serving as the base material for the tiny transistors that make it possible for digital clocks to tick and computers to calculate. Now scientists have succeeded in creating near-atomically flat silicon, of the orientation used by the electronics industry, in a room temperature reaction. The flat silicon might one day serve as the base f ... read more


CHIP TECH
Desert farming forms bacterial communities that promote drought resistance

Survey: Israel heaviest user of pesticides

Scientists Find Aphid Resistance in Black Raspberry

Greater effort needed to move local, fresh foods beyond 'privileged' consumers

CHIP TECH
Taming Mavericks: Stanford Researchers Use Synthetic Magnetism to Control Light

Near-atomically flat silicon could help pave the way to new chemical sensors

Japan's Renesas books $1.18 bn quarterly loss

New finding could pave way to faster, smaller electronics

CHIP TECH
Boeing Opens First System Integration Lab for KC-46 Tanker Program

India raises more concern over Agusta deal

New China stealth fighter in test flight: state media

US travel chaos continues with 20,000 flights cancelled

CHIP TECH
Mazda in profit, cuts sales outlook on China row

Nissan chief wary of China amid island row: report

Wireless system charges electric vehicles

China approves Chery-JLR joint auto venture

CHIP TECH
China grants 95% tariff discount for Angolan exports

Iraq opens biggest trade fair in 20 years

ArcelorMittal reports plungs into loss on weak Chinese demand for steel

Clinton to push Balkans for greater integration

CHIP TECH
Action needed to prevent more devastating tree diseases entering the UK

Inspiration from Mother Nature leads to improved wood

Brazil's Indians appeal for help to stop eviction

Sting forces venue switch in Philippines tree row

CHIP TECH
Sizing up biomass from space

NASA Radar Penetrates Thick, Thin of Gulf Oil Spill

Satellite images tell tales of changing biodiversity

Google adds terrain to Maps as default

CHIP TECH
Graphene Mini-Lab

Strengthening fragile forests of carbon nanotubes for new MEMS applications

A 'nanoscale landscape' controls flow of surface electrons on a topological insulator

Nanotechnology helps scientists keep silver shiny




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement