Subscribe free to our newsletters via your
. GPS News .




SHAKE AND BLOW
Syracuse Geologist Reveals Correlation Between Earthquakes, Landslides
by Staff Writers
Syracuse NY (SPX) Nov 06, 2014


Devin McPhillips.

A geologist in Syracuse University's College of Arts and Sciences has demonstrated that earthquakes--not climate change, as previously thought--affect the rate of landslides in Peru.

The finding is the subject of an article in Nature Geoscience (Nature Publishing Group, 2014) by Devin McPhillips, a research associate in the Department of Earth Sciences. He co-wrote the article with Paul Bierman, professor of geology at The University of Vermont; and Dylan Rood, a lecturer at Imperial College London (U.K.).

"Geologic records of landslide activity offer rare glimpses into landscapes evolving under the influence of tectonics and climate," says McPhillips, whose expertise includes geomorphology and tectonics.

"Because deposits from individual landslides are unlikely to be preserved, it's difficult to reconstruct landslide activity in the geologic past. Therefore, we've developed a method that measures landslide activity before and after the last glacial-interglacial climate transition in Peru."

McPhillips and his team have spent the past several years in the Western Andes Mountains, studying cobbles in the Quebrada Veladera river channel and in an adjacent fill terrace. By measuring the amount of a nuclide known as Beryllium-10 (Be-10) in each area's cobble population, they've been able to calculate erosion rates over tens of thousands of years.

The result? The range of Be concentrations in terrace cobbles from a relatively wet period, more than 16,000 years ago, was no different from those found in river channel cobbles from more recent arid periods.

"This suggests that the amount of erosion from landslides has not changed in response to climatic changes," McPhillips says. "Our integrated millennial-scale record of landslides implies that earthquakes may be the primary landslide trigger."

McPhillips says the study is the first to study landslides by measuring individual particles of river sediment, as opposed to amalgamating all the particles and then measuring a single concentration.

"These concentrations provide a robust record of hill-slope behavior over long timescales," he adds. "Millennial-scale records of landslide activity, especially in settings without preserved landslide deposits, are an important complement to studies documenting modern landslide inventories."

Earthquakes are a regular occurrence in Peru, which is located at the nexus of the small Nazca oceanic plate and the larger South American crustal plate. The ongoing subduction, or sliding, of the Nazca Plate under the South American Plate has spawned considerable tectonic activity.

"Peru is rife with earthquakes, landslides, volcanic eruptions, and tectonic uplift," McPhillips adds. "By studying its past, we may be able to better predict and prepare for future calamities."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Syracuse University
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
Chile earthquake points to rock structures that affect ruptures
Liverpool, UK (SPX) Nov 05, 2014
Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010. The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth's crust. The body was revealed using 3-D seismic im ... read more


SHAKE AND BLOW
Understanding of global freshwater fish and fishing too shallow

Using wheat as an energy source for beef cattle

NMSU professor experiments growing plants in highly saline water

Synthetic fish measures wild ride through dams

SHAKE AND BLOW
'Direct writing' of diamond patterns from graphite a potential technological leap

Raising cryptography's standards

Saving lots of computing capacity with a new algorithm

Harnessing error-prone chips

SHAKE AND BLOW
China looking to develop big passenger plane

Airbus signs deal with Chinese firm for 100 planes

Asia's richest man buys 60 aircraft in $2.5 billion deals

Indonesian Navy to receive Airbus helicopters

SHAKE AND BLOW
Dongfeng, Huawei partner for Internet-enabled cars

Electric car revs to world record in Switzerland

Hyundai, Kia to pay $100 million over fuel economy suit

Toyota racing to record profit, but China flashing red signal

SHAKE AND BLOW
APEC cautiously supports China-backed free-trade zone

Hong Kong lawmakers demand inquiry into city leader

Australia keen on China-backed infrastructure bank

Start-ups say skills, not taxes behind Ireland's draw

SHAKE AND BLOW
Early New Zealand population initiated rapid forest transition

NEIKER fells pine trees to study their wind resistance

Gardeners of Madagascar rainforest at risk

Groundwater patches play important role in forest health, water quality

SHAKE AND BLOW
Five years of soil moisture, ocean salinity and beyond

NASA Lining up ICESat-2's Laser-catching Telescope

Goodbye to Rainy Days for US, Japan's First Rain Radar in Space

Copernicus operations secured until 2021

SHAKE AND BLOW
Outsmarting Thermodynamics in Self-assembly of Nanostructures

'Nanomotor lithography' answers call for affordable, simpler device manufacturing

Tiny carbon nanotube pores make big impact

Electronics industry gets 2 ways to snoop on self-organizing molecules




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.