GPS News  
Synthetic Biology Yields Clues To Evolution And The Origin Of Life

The power of combinatorial chemistry lies in the vast numbers of structurally distinct molecules that can be synthesized and tested at the same time. Similarly, conditions on the early Earth allowed not only the synthesis of a wide variety of complex organic molecules, but also the formation of membrane-bound compartments that would have encapsulated different combinations of molecules.
by Staff Writers
Chicago IL (SPX) Feb 24, 2009
Researchers in the field of synthetic biology are still a long way from being able to assemble living cells from scratch in the laboratory. But according to biochemist David Deamer of the University of California, Santa Cruz, their efforts are yielding clues to the mystery of how life began on Earth.

Deamer has been investigating the origin of life for more than 20 years, focusing on the molecular self-assembly processes that led to the first "protocells" nearly 4 billion years ago. At the annual meeting of the American Association for the Advancement of Science (AAAS) in Chicago, he discussed evolution, biochemistry, and the origin of cellular life.

His presentation is part of a symposium on evolution organized by Eugenie Scott, director of the National Center for Science Education in Oakland, Calif.

According to Deamer, life began with complex systems of molecules that came together through the self-assembly of nonliving components. A useful metaphor for understanding how this came about, he said, can be found in combinatorial chemistry, an approach in which thousands of experiments are carried out in parallel by robotic devices.

"I look at the origin of life as the result of combinatorial chemistry on a global scale," said Deamer, a research professor of chemistry and biochemistry at UCSC who is also affiliated with the Department of Biomolecular Engineering in UCSC's Jack Baskin School of Engineering.

The power of combinatorial chemistry lies in the vast numbers of structurally distinct molecules that can be synthesized and tested at the same time. Similarly, conditions on the early Earth allowed not only the synthesis of a wide variety of complex organic molecules, but also the formation of membrane-bound compartments that would have encapsulated different combinations of molecules.

"We have made protocells in the lab--artificial compartments containing complex systems of molecules," Deamer said.

"The creationists charge that it's too unlikely for the right combination to have come together on its own, but combinatorial chemistry gives us a better way to think about the probability of life emerging from this process."

Life began when one or a few protocells happened to have a mix of components that could capture energy and nutrients from the environment and use them to grow and reproduce.

Efforts to replicate this process in the laboratory are still in their infancy, but Deamer said he is optimistic that scientists will eventually be able to assemble a living cell from a parts list and thereby achieve a better understanding of how life began.

The first forms of life did not evolve in the usual sense, he said, but simply grew. "Evolution began when large populations of cells had variations that led to different metabolic efficiencies," Deamer said. "If the populations were in a confined environment, at some point they would begin to compete for limited resources."

The first evolutionary selection processes would have favored those organisms that were most efficient in capturing energy and nutrients from the local environment, he said.

In his talk at the AAAS meeting, Deamer will outline the conditions that scientists think were necessary for life to emerge on the early Earth. He is currently working on a book about the origin of life to be published by UC Press.

Related Links
University of California - Santa Cruz
Darwin Today At TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Poachers put Balkan lynx on brink of extinction
Galicica Mountain, Macedonia (AFP) Feb 22, 2009
The camera sits hidden in a field ready to track every move of the Balkan lynx, a wild cat both revered as an icon and reviled as a pest that has teetered on extinction for nearly a century.







  • Swiss aircraft firm to cut jobs in Ireland
  • Major airlines call for climate deal to include aviation
  • Bank of China extends massive credit to state aircraft maker
  • Shanghai Airlines seeks capital injection

  • China's Chery Auto unveils electric car: company
  • Electric car charging stations power-up in San Francisco
  • Chinese auto maker plans to take on giants with electric cars
  • Nearly 1,500 more cars in Beijing daily: state media

  • Boeing Delivers First Communications Payload To MUOS Prime Contractor
  • Raytheon Delivers Final Sentinel R Mk 1 Aircraft For UK ASTOR System
  • USAF Awards LockMart Team Contract To Extend TSAT Risk Reduction/System Definition Phase
  • Major Test Of Second Advanced EHF MilComms Satellite Underway

  • BMD Watch: LM wins Aegis upgrade contract
  • BMD Focus: Biden dances in Munich
  • Obama team urges Polish patience on shield
  • Does Missile Defense Discourage Nuclear Proliferation Part 14

  • New study points to GM contamination of Mexican corn
  • Aerosols - Their Part In Our Rainfall
  • Mass Media Often Failing In Its Coverage Of Global Warming
  • Biologist Discusses Sacred Nature Of Sustainability

  • One killed in Romanian military lab explosion
  • Rudd says Australia will rise from 'ashes of despair'
  • China quake victims clash with police: rights group
  • Australian wildfire death toll rises to 208: police

  • Eight Years In Orbit For Swedish Research Satellite
  • Satellite Collision Debris May Hamper Space Launches
  • Impact Specialist To Discuss Catastrophic Collisions In Space
  • Satellite Collision Triggers Calls For Space Traffic Regulations

  • U.S., Chinese scientists build nanorobot
  • NASA And Caltech Test Steep-Terrain Rover
  • NASA And Caltech Test Steep-Terrain Rover
  • ASI Chaos Small Robot To Participate In Series Of Exercises

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement