GPS News  
STELLAR CHEMISTRY
Supersharp Images from New VLT Adaptive Optics
by Staff Writers
Garching, Germany (SPX) Jul 18, 2018

This image of the planet Neptune was obtained during the testing of the Narrow-Field adaptive optics mode of the MUSE/GALACSI instrument on ESO's Very Large Telescope. The corrected image is sharper than a comparable image from the NASA/ESA Hubble Space Telescope.

ESO's Very Large Telescope (VLT) has achieved first light with a new adaptive optics mode called laser tomography - and has captured remarkably sharp test images of the planet Neptune, star clusters and other objects. The pioneering MUSE instrument in Narrow-Field Mode, working with the GALACSI adaptive optics module, can now use this new technique to correct for turbulence at different altitudes in the atmosphere.

It is now possible to capture images from the ground at visible wavelengths that are sharper than those from the NASA/ESA Hubble Space Telescope. The combination of exquisite image sharpness and the spectroscopic capabilities of MUSE will enable astronomers to study the properties of astronomical objects in much greater detail than was possible before.

The MUSE (Multi Unit Spectroscopic Explorer) instrument on ESO's Very Large Telescope (VLT) works with an adaptive optics unit called GALACSI. This makes use of the Laser Guide Star Facility, 4LGSF, a subsystem of the Adaptive Optics Facility (AOF). The AOF provides adaptive optics for instruments on the VLTs Unit Telescope 4 (UT4). MUSE was the first instrument to benefit from this new facility and it now has two adaptive optics modes - the Wide Field Mode and the Narrow Field Mode.

The MUSE Wide Field Mode coupled to GALACSI in ground-layer mode corrects for the effects of atmospheric turbulence up to one kilometre above the telescope over a comparatively wide field of view. But the new Narrow Field Mode using laser tomography corrects for almost all of the atmospheric turbulence above the telescope to create much sharper images, but over a smaller region of the sky.

With this new capability, the 8-metre UT4 reaches the theoretical limit of image sharpness and is no longer limited by atmospheric blur. This is extremely difficult to attain in the visible and gives images comparable in sharpness to those from the NASA/ESA Hubble Space Telescope.

It will enable astronomers to study in unprecedented detail fascinating objects such as supermassive black holes at the centres of distant galaxies, jets from young stars, globular clusters, supernovae, planets and their satellites in the Solar System and much more.

Adaptive optics is a technique to compensate for the blurring effect of the Earth's atmosphere, also known as astronomical seeing, which is a big problem faced by all ground-based telescopes.

The same turbulence in the atmosphere that causes stars to twinkle to the naked eye results in blurred images of the Universe for large telescopes. Light from stars and galaxies becomes distorted as it passes through our atmosphere, and astronomers must use clever technology to improve image quality artificially.

To achieve this four brilliant lasers are fixed to UT4 that project columns of intense orange light 30 centimetres in diameter into the sky, stimulating sodium atoms high in the atmosphere and creating artificial Laser Guide Stars.

Adaptive optics systems use the light from these "stars" to determine the turbulence in the atmosphere and calculate corrections one thousand times per second, commanding the thin, deformable secondary mirror of UT4 to constantly alter its shape, correcting for the distorted light.

MUSE is not the only instrument to benefit from the Adaptive Optics Facility. Another adaptive optics system, GRAAL, is already in use with the infrared camera HAWK-I. This will be followed in a few years by the powerful new instrument ERIS. Together these major developments in adaptive optics are enhancing the already powerful fleet of ESO telescopes, bringing the Universe into focus.

This new mode also constitutes a major step forward for the ESO's Extremely Large Telescope, which will need Laser Tomography to reach its science goals. These results on UT4 with the AOF will help to bring ELT's engineers and scientists closer to implementing similar adaptive optics technology on the 39-metre giant.


Related Links
European Southern Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Hawaii telescopes help unravel long-standing cosmic mystery
Manoa HI (SPX) Jul 13, 2018
Astronomers and physicists around the world, including in Hawaii, have begun to unravel a long-standing cosmic mystery. Using a vast array of telescopes in space and on Earth, they have identified a source of cosmic rays--highly energetic particles that continuously rain down on Earth from space. In a paper published this week in the journal Science, scientists have, for the first time, provided evidence for a known blazar, designated TXS 0506+056, as a source of high-energy neutrinos. At 8:54 p.m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Expansion of agricultural land reduces CO2 absorption

China chili fest gets off to scorching start

As trial opens, man dying of cancer blames Monsanto's Roundup

US farmers caught in trade war with China

STELLAR CHEMISTRY
Semiconductor quantum transistor points to photon-based computing

China court 'bans sales' of chips from US firm Micron

Closing the gap: On the road to terahertz electronics

Scientists pump up chances for quantum computing

STELLAR CHEMISTRY
UK seeks to allay Brexit fears at Farnborough air show

Airbus strikes deals in China, India amid Brexit concerns

TItan LSC contracted for Saudi F-15 modernization support

Slovakia to buy 14 US-made F-16 jet fighters

STELLAR CHEMISTRY
Elon Musk's latest outburst raises doubts on leadership

Departing Apple engineer stole autonomous car tech: FBI

Tesla unveils Shanghai factory plans amid US-China trade row

Uber joins scooter wars with Lime investment

STELLAR CHEMISTRY
EU urges big powers to avert trade 'conflict and chaos'

China economic growth slows in second quarter, warns on trade war

As trade war rages, Trump flags fly out of China factory

China pledges more BRICS cooperation as US trade tensions rise

STELLAR CHEMISTRY
Brazil's green candidate aims to restore 'credibility'

Pollution makes trees more vulnerable to drought

Forest growth limited over next 60 years, study finds

UN report urges nations to take better care of world's forests

STELLAR CHEMISTRY
What does global climate have to do with erosion rates?

Copernicus Sentinel-5P releases first data

ICESat-2 Lasers Pass Final Ground Test

Chinese foam industry responsible for rise in CFC-11 emissions

STELLAR CHEMISTRY
Physicists uncover why nanomaterial loses superconductivity

Squeezing light at the nanoscale

A new way to measure energy in microscopic machines

AI-based method could speed development of specialized nanoparticles









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.