GPS News  
STELLAR CHEMISTRY
Supernova twins: Making standard candles more standard than ever
by Staff Writers
Berkeley CA (SPX) Nov 06, 2015


From left, Greg Aldering, Kyle Boone, Hannah Fakhouri and Saul Perlmutter of the Nearby Supernova Factory, who found that matching the spectra of Type Ia supernovae can double the accuracy of distance measurements. Image courtesy Roy Kaltschmidt, Lawrence Berkeley National Laboratory. For a larger version of this image please go here.

Less than 20 years ago the world learned that the universe is expanding ever faster, propelled by dark energy. The discovery was made possible by Type Ia supernovae; extraordinarily bright and remarkably similar in brightness, they serve as "standard candles" essential for probing the universe's history.

In fact, Type Ia supernovae are far from standard. Intervening dust can redden and dim them, and the physics of their thermonuclear explosions differs - a single white dwarf (an Earth-sized star as massive as our sun) may explode after borrowing mass from a companion star, or two orbiting white dwarfs may collide and explode. These "normal" Type Ia's can vary in brightness by as much as 40 percent. Brightness dispersion can be reduced by well-proven methods, but cosmology continues to be done with catalogues of supernovae that may differ in brightness by as much as 15 percent.

Now members of the international Nearby Supernova Factory (SNfactory), based at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), have dramatically reduced the scatter in supernova brightnesses. Using a sample of almost 50 nearby supernovae, they identified supernova twins - pairs whose spectra are closely matched - which reduced their brightness dispersion to a mere eight percent. The distance to these supernovae can be measured about twice as accurately as before.

Comparing apples to apples
"Instead of concentrating on what's causing the differences among supernovae, the supernova-twins approach is to look at the spectra and seek the best matches, so as to compare like with like," says Greg Aldering, the Berkeley Lab cosmologist who leads the SNfactory. "The assumption we tested is that if two supernovae look the same, they probably are the same."

Hannah Fakhouri, the lead author of the ApJ paper, initiated the twin study for her doctoral thesis. She says that the theoretical advantages of a twins match-up had long been discussed at Berkeley Lab; for the researchers who founded the SNfactory, including her thesis advisor, Nobel laureate Saul Perlmutter, one of the main goals was gathering a dataset of sufficient quality to test hypotheses like supernova twinning.

Fakhouri's timing was good; she was able to take advantage of precise spectrophotometry - simultaneous measures of spectra and brightness - of numerous nearby Type Ia's, collected using the SNfactory's SuperNova Integral Field Spectrograph (SNIFS) on the University of Hawaii's 2.2-meter telescope on Mauna Kea.

"Nearby" is relative; some SNfactory supernovae are more than a billion light years away. But all yield more comprehensive and detailed measurements than the really distant supernovae also needed for cosmology. The twin study used data from the first years of the SNfactory's observations; further work will use hundreds of high-quality Type Ia spectra from the SNfactory, so far the only large database in the world that can be used for this work.

Despite the surprising results, Fakhouri describes the initial research as "a long slog," requiring hard work and attention to detail. One challenge was making fair comparisons of time series, in which spectra are taken at frequent intervals as a supernova reaches maximum luminosity, then slowly fades; different colors (wavelengths) brighten and fade at different rates.

Because of demands on telescope time and other issues like weather, the time series of different supernovae can't be sampled uniformly. SNfactory member Rollin Thomas, of Berkeley Lab's Computational Cosmology Center, recommended a mathematical procedure called Gaussian Process regression to fill the gaps. Fakhouri says the outcome "was a big breakthrough."

Cleaning up the spectra and ranking the supernovae for twinness was done completely "blind" - the researchers had no information about the supernovae except their spectra. "The unblinding process was suspenseful," Fakhouri says. "We might have found that twinning was completely useless." The result was a relief: the closer the twins' spectra, the closer their brightnesses.

The result strongly suggests that the long-accepted 15-percent uncertainty in Type Ia brightness is not merely statistical; it masks real but unknown differences in the nature of the supernovae themselves. The twin method's dramatic reduction of brightness dispersion suggests that hidden unknowns about the physical explosion processes of twins have been severely reduced as well, a strong step toward using such supernovae as true standard candles.

The best of the bunch
When Fakhouri received her doctorate, graduate student Kyle Boone, second author of the ApJ paper, took over the final steps of the analysis. "I started by comparing the twin method to other methods for reducing dispersion in brightness."

The conventional approach has been to fit a curve through a series of data points of brightness versus time: a lightcurve. Dimmer Type Ia's have narrower lightcurves and are redder; this fact is used to "standardize" supernovae, that is, to adjust their brightnesses to a common system.

The twin method, says Boone, "beats the lightcurve method without even trying. Plus, we found this can be done with just one spectrum - an entire lightcurve is not needed."

Other recent methods are more subtle and detailed, but all have drawbacks compared to twinning. "The main competing technique gives excellent results but depends on wavelengths in the near infrared, where dispersion of the starting brightness is much less," Boone says. "That will be difficult to use with distant supernovae, whose high redshift makes near-infrared wavelengths inaccessible."

Fakhouri says, "Supernovae offer unique advantages for cosmology, but we need multiple techniques," including statistical methods charting how dark energy has shaped the structure of the universe. "The great thing about nature is that it provides different kinds of probes that can be decoupled from one another."

Supernovae are a singular asset, notes Aldering: "Supernovae found dark energy, and they still provide the strongest constraints on dark energy properties."

Says Boone, "We are working to see how well the twins technology can be applied to a very large sample of well-characterized, high-redshift supernovae that a space telescope like WFIRST could provide." NASA plans to launch WFIRST, the Wide-Field Infrared Survey Telescope, in the mid-2020s. Among other investigations, it will capture the spectra of many thousands of distant Type Ia supernovae.

When based on a reference sample of well-measured supernovae large enough for every new supernova to find its perfect twin, twin-supernova technology could lead to precise measures of dark energy's effect on the universe over the past 10 billion years. Each point in space and time so labeled will be an accurate milestone on the journey that led to the universe we live in today.

"Improving cosmological distance measurements using twin Type Ia supernovae," by Hannah K. Fakhouri, Kyle Boone, Greg Aldering, Pierre Antilogus, Cecilia Aragon, Stephen Bailey, Charles Baltay, Kyle Barbary, Derek Baugh, Sebastien Bongard, Clement Buton, Jungcheng Chen, Mike Childress, Nicolas Chotard, Yannick Copin, Parker Fagrelius, Ulrich Feindt, Mathilde Fleury, Dominique Fouchez, Emmanuel Gangler, Brian Hayden, Alex Kim, Marek Kowalski, Pierre-Francois Leget, Simona Lombardo, Jakob Nordin, Reynald Pain, Emmanuel Pecontal, Rui Pereira, Saul Perlmutter, David Rabinowitz, James Ren, Mickael Rigault, David Rubin, Karl Runge, Clare Saunders, Richard Scalzo, Gerard Smadja, Caroline Sofiatti, Mark Strovink, Nao Suzuki, Charling Tao, Rollin Thomas, and Benjamin Alan Weaver (The Nearby Supernova Factory), has been accepted for publication by the Astrophysical Journal


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Nearby Supernova Factory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Growing pains in a cluster of protostars
New Haven CT (SPX) Nov 05, 2015
A Yale-led study has found a cluster of young stars that develop in distinct, episodic spurts. It is the first time astronomers have seen such a growth pattern within a star cluster - a chaotic, turbulent environment that is common for star formation. Previous observations have focused on stars forming in more isolated regions of space. In a study published this week in the journal Nature, ... read more


STELLAR CHEMISTRY
Faster digestion in kangaroos reduces methane emissions

How plant cell compartments 'chat' with each other

Colombia drought threatens one of world's top coffees

Blowing in the wind: how to stop cow burps warming Earth

STELLAR CHEMISTRY
China state-owned firm to build $15 bn chip plant

Silicon Valley granddaddy HP readies breakup

Techniques to cool 3D integrated circuits stacked like a skyscraper

Manipulating wrinkles could lead to graphene semiconductors

STELLAR CHEMISTRY
First U.S. Air Force F-16s undergo aircraft purification

Saab continues Swedish aircraft maintenance, service support

U.S. Air Force successfully demonstrates F135 engine

Jeppesen to provide U.S. Air Force with electronic flight bag services

STELLAR CHEMISTRY
Making cars of the future stronger, using less energy

Moody's downgrades VW as toll from emissions scandal grows

Nissan boosts annual outlook on new models, N.America sales

VW suspends sales of US diesel models; Moody's cuts rating

STELLAR CHEMISTRY
Record China trade surplus highlights struggle to boost demand

China applies to join European reconstruction bank

Trade trumps hostility for S. Korea-China-Japan summit

Chinese investors held after metals exchange protest plans

STELLAR CHEMISTRY
Peru creates huge national park in Amazon basin

OECD warns Brazil on environment, economy risks

After 5,000 years, Britian's Fortingall Yew is turning female

Amazonian natives had little impact on land, new research finds

STELLAR CHEMISTRY
Curtiss-Wright and Harris bring digital map solutions to rugged systems

OGC and ASPRS to collaborate on geospatial standards

Study predicts bedrock weathering based on topography

How TIMED Flies: Unexpected Trends in Carbon Data

STELLAR CHEMISTRY
Finally a promising natural nanomaterial

Umbrella-shaped diamond nanostructures make efficient photon collectors

Anti-clumping strategy for nanoparticles

Are cars nanotube factories on wheels









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.