GPS News  
CARBON WORLDS
Superdeep diamonds confirm ancient reservoir deep under Earth's surface
by Staff Writers
Barcelona, Spain (SPX) Aug 17, 2019

File image of a superdeep diamond.

Analyses show that gases found in microscopic inclusions in diamonds come from a stable subterranean reservoir at least as old as the Moon, hidden more than 410 km below sea level in the Earth's mantle.

Scientists have long suspected that an area of the Earth's mantle, somewhere between the crust and the core, contains a vast reservoir of rock, comparatively undisturbed since the planet's formation. Until now, there has been no firm proof if or where it exists.

Now an international group of scientists has measured helium isotopes contained in superdeep diamonds brought to the surface by violent volcanic eruptions, to detect the footprints of this ancient reservoir. This work will be presented to scientists for the first time on Friday 23rd August at the Goldschmidt conference in Barcelona, after publication (15 August) in the journal Science*.

After the formation of the Earth, violent geological activity and extra-terrestrial impacts disrupted the young planet, meaning that almost nothing of the Earth's original structure remains. Then in the 1980's geochemists noted that in some basalt lavas from particular locations the ratio of the helium 3 to helium 4 isotope was higher than expected, mirroring the isotope ratio found in extremely old meteorites which had fallen to Earth.

This indicates that the lava had carried the material from some kind of reservoir deep in the Earth, with a composition which hasn't changed significantly in the last 4 billion years.

"This pattern has been observed in 'Ocean Island Basalts', which are lavas coming to the surface from deep in the Earth, and form islands such as Hawaii and Iceland" said research leader Dr Suzette Timmerman, from the Australian National University. "The problem is that although these basalts are brought to the surface, we only see a glimpse of their history. We don't know much about the mantle where their melts came from".

To address this problem, Timmerman's team looked at helium isotope ratios in superdeep diamonds. Most diamonds are formed between 150 to 230 km below the Earth's crust, before being carried to the surface by melts. Very occasionally some 'superdeep' diamonds (created between 230 and 800 km below the Earth's surface) are brought to the surface. These superdeep diamonds are recognisably different from normal diamonds.

Suzette Timmerman said "Diamonds are the hardest, most indestructible natural substance known, so they form a perfect time capsule that provides us a window into the deep Earth. We were able to extract helium gas from twenty-three super-deep diamonds from the Juina area of Brazil.

These showed the characteristic isotopic composition that we would expect from a very ancient reservoir, confirming that the gases are remnants of a time at or even before the Moon and Earth collided. From the geochemistry of the diamonds, we know that they formed in an area called the 'transition zone', which is between 410 and 660 km below the surface of the Earth. This means that this unseen reservoir, left over from the Earth's beginnings, must be in this area or below it.

Questions remain about the form of this reservoir; is it a large single reservoir, or are there multiple smaller ancient reservoirs? Where exactly is the reservoir? What is the complete chemical composition of this reservoir? But with this work we are beginning to home in on what is probably the oldest remaining comparatively undisturbed material on Earth"

Commenting, Professor Matthew Jackson (University of California, Santa Barbara) said:

"There has been a lot of work focused on identifying the location of primordial reservoirs in the deep Earth. So this is an interesting result, with a lot of potential to "map out" where elevated 3He/4He domains are located in the Earth's deep interior.

"Helium can diffuse rapidly at mantle conditions, so it will be important to evaluate whether the ancient helium signature reflects compositions trapped at diamond-formation depths, or the composition of the host lava that transported to diamonds to the surface. This work is an important step towards understanding these reservoirs, and points the way to further research".

Research paper


Related Links
Goldschmidt Conference
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
How do atoms vibrate in graphene nanostructures?
Vienna, Austria (SPX) Aug 13, 2019
In order to understand advanced materials like graphene nanostructures and optimize them for devices in nano-, opto- and quantum-technology it is crucial to understand how phonons - the vibration of atoms in solids - influence the materials' properties. Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Study details links between coca, conflict, deforestation in Colombia

The 'gift' of Tunisia's delicate date palm drink

Ancient pigs endured a complete genomic turnover after they arrived in Europe

Can we eat meat and still tame global warming?

CARBON WORLDS
New perovskite material shows early promise as an alternative to silicon

Newfound superconductor material could be the 'silicon of quantum computers'

Quantum light sources pave the way for optical circuits

Researchers produce electricity by flowing water over extremely thin layers of metal

CARBON WORLDS
Cathay Pacific's torrid week ends with shock CEO resignation

N.H. Air National Guard base gets its first KC-46A tanker

Air Force grounds 123 C-130s due to 'atypical cracks'

South Korea approved to buy 12 MH-60R Seahawk helicopters

CARBON WORLDS
Uber shares skid as quarterly loss soars

Lyft gets boost from improving outlook

Lyft suspends e-bikes after battery fires

Five things to know about VW's 'dieselgate' scandal

CARBON WORLDS
Greenland cold-shoulders Trump's reported buyer's wish

Consumers supporting US economy amid manufacturing slump

The Turkish army pension fund taking over British Steel

Trump threatens to pull US from WTO 'if we have to'

CARBON WORLDS
Norway blocks 30 mn-euro deforestation subsidy to Brazil

Mexican start-up fights air pollution with artificial trees

Stanford-led study gauges trees' and carbon sequestration

African forest elephant helps increase biomass and carbon storage

CARBON WORLDS
Making microbes that transform greenhouse gases

Using lasers to visualize molecular mysteries in our atmosphere

Making sense of remote sensing data

NASA's Spacecraft Atmosphere Monitor Goes to Work Aboard the International Space Station

CARBON WORLDS
DNA origami joins forces with molecular motors to build nanoscale machines

DARPA Announces Microsystems Exploration Program









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.