. GPS News .




.
SOLAR SCIENCE
Sun delivered curveball of powerful radiation at Earth
by Staff Writers
Durham NH (SPX) Feb 02, 2012

Both events, while strong forms of space weather, were not as powerful as the 2003 Halloween storms, which were the most powerful space weather events of the last 22 years. But as the Sun moves towards solar maximum in 2013, it may yet have even more powerful storms to deliver as it becomes increasingly violent.

A potent follow-up solar flare, which occurred Friday (Jan. 27, 2012), just days after the Sun launched the biggest coronal mass ejection (CME) seen in nearly a decade, delivered a powerful radiation punch to Earth's magnetic field despite the fact that it was aimed away from our planet.

According to University of New Hampshire scientists currently studying and modeling various aspects of solar radiation, this was due to both the existing population of energetic particles launched by the first CME and a powerful magnetic connection that reeled particles in towards Earth from the Sun's blast region, which had spun to an oblique angle.

"Energetic particles can sneak around the 'corner,' as was the case in Friday's event when it was launched at the Sun's limb, or edge," says astrophysicist Harlan Spence, director of the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and principal investigator for the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument onboard NASA's Lunar Reconnaissance Orbiter (LRO) mission. CRaTER is designed to measure and characterize aspects of the deep space radiation environment.

Space weather events can disrupt Earth-based power grids, satellites that operate global positioning systems and other devices, can lead to some rerouting of flights over the polar regions, and pose severe risk to astronauts beyond low-Earth orbit.

The first explosion, which occurred Monday, Jan. 23, 2012, fell just short of being rated an X-class flare - the most powerful type of solar storm. When Friday's X-flare exploded from the same sunspot region that was the source of the week's earlier blast, the Sun's west limb was pointing away from Earth.

Nonetheless, the resulting high-energy protons that speed toward Earth even faster than the four-million-mile-per-hour solar wind demonstrated that dangerous "space weather" can affect us even when the planet is not in the direct path.

"The magnetic field lines on which energetic particles travel curve from the Sun to Earth unlike CMEs, which travel in straight lines. In the case of the second flare, energetic particles were magnetically connected to Earth even though the second CME from this active region missed us entirely," explains Madhulika Guhathakurta, lead program scientist of NASA's Living with a Star program.

Notes Spence, "And the situation was worsened, from the standpoint of radiation, because there was a pre-existing energetic particle population, from the first CME, when the second one arrived."

CRaTER's primary goal has been to characterize the global lunar radiation environment and its biological impacts. It does so by measuring galactic and solar cosmic radiation from behind a "human tissue-equivalent" plastic. During the two and a half years the LRO mission has been making measurements, the latest solar events are the most significant with respect to incoming radiation.

"We now have estimates of the dose and can speak to the biological impacts that might have occurred in deep space to astronauts," says Michael Wargo, NASA's chief lunar scientist.

Both events, while strong forms of space weather, were not as powerful as the 2003 Halloween storms, which were the most powerful space weather events of the last 22 years. But as the Sun moves towards solar maximum in 2013, it may yet have even more powerful storms to deliver as it becomes increasingly violent.

Measurements from CRaTER, and predictions from the UNH Earth-Moon-Mars Radiation Environment Module (EMMREM), whose principal investigator is astrophysicist Nathan Schwadron of the EOS Space Science Center, describe radiation exposure in space, on the Moon, and in planetary environments. The resulting understanding of space radiation hazards becomes evermore critical in studying and predicting the effects of these powerful solar outbursts.

Notes Guhathakurta, "The use of EMMREM to characterize active events highlights our rapidly advancing capabilities for understanding, characterizing, and even predicting the radiation coming from our increasingly active Sun."

Related Links
University of New Hampshire
Solar Science News at SpaceDaily




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



SOLAR SCIENCE
Solar Storms Blasting Electrons from Earth's Van Allen Belts
Los Angeles CA (SPX) Feb 02, 2012
Scientists say they have solved the mystery of why electrically-charged particles trapped in radiation belts thousands of kilometers above the Earth suddenly vanish and then reappear during periods of heightened solar activity. NASA-funded researchers at the University of California, Los Angeles (UCLA) tracked the electrons using data collected simultaneously with 11 different spacecraft. ... read more


SOLAR SCIENCE
Africa land grabs 'could cause conflicts'

Livestock, not Mongolian gazelles, drive foot-and-mouth disease outbreaks

Cattle outbreak hitting Paraguay exports

Biodiversity enhances ecosystems global drylands

SOLAR SCIENCE
Jumpstarting computers with 3-D chips

Researchers Devise New Means For Creating Elastic Conductors

Cooling semiconductor by laser light

A new class of electron interactions in quantum systems

SOLAR SCIENCE
Singapore Airlines 3Q net profit down 53 percent on-year

Snow and fog ground half of London Heathrow's flights

New Ideas Sharpen Focus for Greener Aircraft

Japan's ANA nine-month net profit down 10%

SOLAR SCIENCE
Toyota aims for almost 10 million in vehicle sales

Wireless power could revolutionize highway transportation

Holden blames job losses on strong Australian dollar

US auto sales see fastest pace since 2008

SOLAR SCIENCE
Japan's Panasonic set for $10.2 billion loss

Canada PM Harper goes to China to boost trade

Brazil eases Cuba into free market economy

Japan's Sony more than doubles net loss forecast

SOLAR SCIENCE
Temperate Freshwater Wetlands Are 'Forgotten' Carbon Sinks

Deforestation threatens Brazil's wetland sanctuary

Living on the edge: An innovative model of mangrove-hammock boundaries in Florida

Restored wetlands rarely equal condition of original wetlands

SOLAR SCIENCE
China considers Google Maps request

NASA's GCPEX Mission: What We Don't Know about Snow

NASA Finds 2011 Ninth-Warmest Year on Record

Satellite observes spatiotemporal variations in mid-upper tropospheric methane over China

SOLAR SCIENCE
Nano-oils keep their cool

Rice professor's nanotube theory confirmed

UK researchers shed light on magnetic mystery of graphite

Graphene: Impressive capabilities on the horizon


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement