Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Study suggests second life for possible spintronic materials
by Staff Writers
Athens OH (SPX) Jun 07, 2013


This image shows a 3-D rendering of a stable manganese gallium nitride surface structure. Credit: A.R. Smith, Ohio University.

Ten years ago, scientists were convinced that a combination of manganese and gallium nitride could be a key material to create spintronics, the next generation of electronic devices that operate on properties found at the nanoscale. But researchers grew discouraged when experiments indicated that the two materials were as harmonious as oil and water.

A new study led by Ohio University physicists suggests that scientists should take another look at this materials duo, which once was heralded for its potential to be the building block for devices that can function at or above room temperature.

"We've found a way-at least on the surface of the material-of incorporating a uniform layer," said Arthur Smith, a professor of physics and astronomy at Ohio University who leads the international collaboration of Argentinian and Spanish researchers.

The scientists made two important changes to create the material merger, they report in the journal Physical Review B. First, they used the nitrogen polarity of gallium nitride, whereas conventional experiments used the gallium polarity to attach to the manganese, Smith explained. Second, they heated the sample.

At lower temperatures (less than 105 degrees Celsius), the manganese atoms "float" on the outer layer of gallium atoms. When the scientists raised the temperature about 100 degrees Celsius, Smith said, the atoms connected to the nitrogen layer underneath, creating a manganese-nitrogen bond. This bond remains stable, even at very high temperatures.

The theoretical scientists accurately predicted that a "triplet" structure of three manganese atoms would form a metastable structure at low temperatures, Smith said. But at higher temperatures, those manganese atoms break apart and bond with nitrogen. Valeria Ferrari of the Centro Atomico Constituyentes said her group performed quantum mechanical simulations to test which model structures have the lowest energy, which suggested both the trimer structure and the manganese-nitrogen bonded structure.

Now that scientists have shown that they can create a stable structure with these materials, they will investigate whether it has the magnetic properties at room temperature necessary to function as a spintronic material.

The study authors are Abhijit Chinchore, Kangkang Wang, Meng Shi, Andrada Mandru, Yinghao Liu, Muhammad Haider and Arthur Smith of the Nanoscale and Quantum Phenomena Institute at Ohio University; Valeria Ferrari and Maria Andrea Barral of the Centro Atomico Constituyentes, GIyA, CNEA, San Martin, Buenos Aires, Argentina; and Pablo Ordejon, Centre d'Investigacio en Nanociencia i Nanotecnologia, Barcelona, Spain.

.


Related Links
Ohio University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Mighty Micropumps: Small but Powerful Vacuum Pumps Demonstrated
Washington DC (SPX) Jun 07, 2013
DARPA-funded researchers recently demonstrated the world's smallest vacuum pumps. This breakthrough technology may create new national security applications for electronics and sensors that require a vacuum: highly sensitive gas analyzers that can detect chemical or biological attack, extremely accurate laser-cooled chip-scale atomic clocks and microscale vacuum tubes. In 2008, DARPA's Chi ... read more


CHIP TECH
Wild turkey damage to crops and wildlife mostly exaggerated

China, Argentina to increase soybean, corn trade: official

Climate and land use: Europe's floods raise questions

China opens EU wine probe as trade dispute spreads

CHIP TECH
Study suggests second life for possible spintronic materials

Spintronics approach enables new quantum technologies

Resistivity switch is window to role of magnetism in iron-based superconductors

'Temporal cloaking' could bring more secure optical communications

CHIP TECH
Boeing EMARSS Aircraft Completes First Test Flight

Pilot Completes First F-35 Vertical Landing for Royal Air Force

Egypt report blames balloon crash on pilot, leak

Shun Tak Holdings buys a third of Jetstar Hong Kong

CHIP TECH
Los Alamos catalyst could jumpstart e-cars, green energy

Volvo chief acknowledges errors, says to stay in US

Monitoring system can detect dangerous fatigue in mine truck driver

Electric cars slow to gain traction in Germany

CHIP TECH
China May trade data highlights growth concerns

Hundreds fall sick in Bangladesh garment factory

Argentina, Brazil head for showdown over rail seizure

France's Hollande pays state visit to Japan

CHIP TECH
Brazil police deployed to contain land feud

Brazil grapples with indigenous land protests

Forest, soil carbon important but does not offset fossil fuel emissions

Smithsonian scientists discover that rainforests take the heat

CHIP TECH
New maps show how shipping noise spans the globe

Magnetospheric Multiscale Mission Team Assemble Flight Observatory

Elevated carbon dioxide making arid regions greener

Landsat 8 Satellite Begins Watch

CHIP TECH
Stretchable, transparent graphene-metal nanowire electrode

Shape-shifting nanoparticles flip from sphere to net in response to tumor signal

Gold nanocrystal vibration captured on billion-frames-per-second film

Understanding freezing behavior of water at the nanoscale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement