Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Study reveals clues to cause of hydrogen embrittlement in metals
by Staff Writers
Montreal, Canada (SPX) Nov 22, 2012


State-of-the-art computer simulations were performed by Song to reveal explicitly how hydrogen atoms move within metals and how they interact with metal atoms.

Hydrogen, the lightest element, can easily dissolve and migrate within metals to make these otherwise ductile materials brittle and substantially more prone to failures. Since the phenomenon was discovered in 1875, hydrogen embrittlement has been a persistent problem for the design of structural materials in various industries, from battleships to aircraft and nuclear reactors.

Despite decades of research, experts have yet to fully understand the physics underlying the problem or to develop a rigorous model for predicting when, where and how hydrogen embrittlement will occur. As a result, industrial designers must still resort to a trial- and-error approach.

Now, Jun Song, an Assistant Professor in Materials Engineering at McGill University, and Prof. William Curtin, Director of the Institute of Mechanical Engineering at Ecole Polytechnique Federale de Lausanne in Switzerland, have shown that the answer to hydrogen embrittlement may be rooted in how hydrogen modifies material behaviours at the nanoscale.

In their study, published in Nature Materials, Song and Curtin present a new model that can accurately predict the occurrence of hydrogen embrittlement.

Under normal conditions, metals can undergo substantial plastic deformation when subjected to forces. This plasticity stems from the ability of nano- and micro-sized cracks to generate "dislocations" within the metal - movements of atoms that serve to relieve stress in the material.

"Dislocations can be viewed as vehicles to carry plastic deformation, while the nano- and micro-sized cracks can be viewed as hubs to dispatch those vehicles," Song explains.

"The desirable properties of metals, such as ductility and toughness, rely on the hubs functioning well. Unfortunately those hubs also attract hydrogen atoms.

The way hydrogen atoms embrittle metals is by causing a kind of traffic jam: they crowd around the hub and block all possible routes for vehicle dispatch. This eventually leads to the material breaking down."

State-of-the-art computer simulations were performed by Song to reveal explicitly how hydrogen atoms move within metals and how they interact with metal atoms. This simulation was followed by rigorous kinetic analysis, to link the nanoscale details with macroscopic experimental conditions.

This model has been applied to predict embrittlement thresholds in a variety of ferritic iron-based steels and produced excellent agreements with experiments. The findings provide a framework for interpreting experiments and designing next-generation embrittlement-resistant structural materials.

The research was funded in part by the Natural Sciences and Engineering Research Council of Canada, the U.S. Office of Naval Research and by the General Motors/Brown Collaborative Research Lab on Computational Materials.

.


Related Links
McGill University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
China sets special funds to boost rare earth sector
Shanghai (AFP) Nov 21, 2012
China said Wednesday it would allocate special funds to its rare earths sector to support producers hit by weak prices, but did not give the total amount. China produces more than 95 percent of the world's rare earths, 17 elements crucial for making a range of hi-tech products. The country's control over the sought-after resources - through production caps and export quotas - has spark ... read more


TECH SPACE
Flower power to purge poison and produce platinum

Afghanistan: Bad weather foils poppy crops

Brazil native people say farmers poisoned stream

Thanksgiving turkeys in genetic study

TECH SPACE
USC scientists 'clone' carbon nanotubes to unlock their potential for use in electronics

Intel to seek new CEO, Otellini to retire in May

First noiseless single photon amplifier

New study reveals challenge facing designers of future computer chips

TECH SPACE
Boeing Adapts Innovative Training Technologies to FA-18E and F-15E

US Navy Selects Lockheed Martin to Modernize C-130T Aircraft

Boeing and AVIC to Collaborate on Interior Supply Capability in China

F-35A Achieves Maximum High Angle Of Attack Limit In Four Flights

TECH SPACE
Chinese-Israeli car's debut planned for March

Fiat touts Italian style in China car challenge

China car market to grow 8% annually: McKinsey

Jaguar Land Rover, Chery lay foundation for China plant

TECH SPACE
Protest strikes disrupt Argentine cities

Hundreds protest against Myanmar copper mine

Fitch cuts ratings on Panasonic, Sony to junk

Strong interest for Chinese insurer PICC's IPO

TECH SPACE
Preserve the services of mangroves - Earth's invaluable coastal forests

Massive deforestation risks turning Somalia into desert

Myanmar's forests at risk

Inspiration from Mother Nature leads to improved wood

TECH SPACE
What lies beneath? New survey technique offers detailed picture of our changing landscape

How many Russian Earth observation satellites will be in orbit by 2015?

A SPOT 6 Success Story

China launches third environment monitoring satellite

TECH SPACE
ORNL pushes the boundaries of electron microscopy to unlock the potential of graphene

Nanometer-scale diamond tips improve nano-manufacturing

Paper-and-scissors technique rocks the nano world

Pull with caution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement